Efficient Binary Search Trees

- Binary Search Tree
 - height can be as large as N
 - Complexity: Search, Insert, Delete
 - $O(n)$
- We want a tree with small height
- A binary tree with N node has height at least $\Theta(\log N)$
- Our goal
 - keep the height of a binary search tree $O(\log N)$
balanced binary search trees

• AVL tree
 – Adelson-Velskii and Landis
• Red-black tree
AVL Tree

• an empty tree is height-balanced

• If T is a nonempty binary tree with T_L and T_R as its left and right subtrees respectively, then T is height-balanced iff

 • (1) T_L and T_R are height-balanced and
 • (2) $|h_L - h_R| \leq 1$ where h_L and h_R are the heights of T_L and T_R respectively
Balance Factor

• The balance factor, BF(T), of a node T in a binary tree
 \(-h_L - h_R\)
• For any node T in an AVL tree
 \(-BF(T) = -1, 0, or 1\)
AVL Tree?
(a) Insert MAR

(b) Insert MAY
• Insertion may leads to unbalancing!
• Rebalance it!

(c) Insert NOV
• LL
 – \(BF(A) = 2 \)
 – Caused by insertion to the left-subtree of A’s left-child

• RR
 – \(BF(A) = -2 \)
 – Caused by insertion to the right-subtree of A’s right-child
• LR
 – BF(A) = 2
 – Caused by insertion to the right-subtree of A’s left-child

• RL
 – BF(A) = -2
 – Caused by insertion to the left-subtree of A’s right-child
Build an AVL Tree

(13, 24, 37, 90, 53)
LR(b)
Insert 16, 3, 7, 11, 9, 26, 18
Notations

• The height of the subtree involved in the rotation is the same after rebalancing as it was before.

• The only nodes whose BF can change are those in the subtree that is rotated.
Notations

• Node A
 – the nearest ancestor of Y, whose BF becomes ±2
 – the nearest ancestor with BF= ±1 before insertion.

• Before the insertion, the BF’s of all nodes on the path from A to the new insertion point must have been 0

• To complete the rotation, the parent of A, F is also needed (Why?)
Notations

• Whether or not the restructuring is needed, the BF’s of several nodes change

• Let A be the nearest ancestor of the new node with BF=±1 before the insertion
 – If no such an A, let A be the root.
 – The BF’s of nodes from A to the parent of the new node will change to ±1
template <class K, class E> class AvlNode {
 friend class AVL<K, E>;

 public:
 AvlNode(const K& k, const E& e) {
 key=k; element=e; bf=0;
 leftChild=rightChild=0;}

 private:
 K key;
 E element
 int bf;;
 AvlNode<K, E> *leftChild, *rightChild;
};
template <class K, class E>
class AVL {
 public:
 AVL(): root(0) {};
 E& Search(const K&) const;
 void Insert(const K&, const E&);
 void Delete(const K&);
 private:
 AvlNode<K, E>* root;
};
template <class K, class E>
void AVL<K, E>::Insert(const K& k, const E& e) {
 if (!root) { // empty tree
 root=new AvlNode<K, E>(k, e);
 return;
 }
 // phase 1: Locate insertion point for e.
 AvlNode<K, E> *a=root, // most recent node with BF±1
 *pa, // parent of a
 *p=root, // p move through the tree
 *pp=0; // parent of p
while (p) { // search for insertion point for x
 if (p→bf)
 {a=p; pa=pp;}
 if (k<p→key)
 {pp=p; p=p→leftChild;}
 else if (k>p→key)
 {pp=p; p=p→rightChild;}
 else
 {p→element=e; return;} // k in the tree
} // end of while
• // phase 2: Insert and rebalance. k is not in the tree
• // will be inserted as the appropriate child of pp.
• AvlNode<K, E> *y = new AvlNode<K, E>(k, e);
• if (k < pp->key)
• pp->leftChild = y; // as left child
• else
• pp->rightChild = y; // as right child
// Adjust BF's of nodes on path from a to pp.
// d=+1 implies k is inserted in the left subtree of a and d=-1 in the right.
// The BF of a will be changed later.

int d;
AvlNode<k, E> *b, // child of a
*c; // child of b
if (k>a->key)
 { b=p=a->rightChild; d=-1;}
else
 { b=p=a->leftChild; d=1;}

while (p!=y)
 if (k>p→key) {
 // height of right increases by 1
 p→bf= -1;
 p=p→rightChild;
 }
 else {
 // height of left increases by 1
 p→bf= 1;
 p=p→leftChild;
 }
// Is tree unbalanced?
 if (!(a→bf) || !(a→bf +d)) {
 // tree still balanced
 a→bf +=d; return;
 }

 //tree unbalanced, determine rotation type
 if (d==1) { // left imbalance
• if (b->bf==1) { // type LL
 a->leftChild=b->rightChild;
 b->rightChild=a;
 a->bf=0; b->bf=0;
 }

else { // type LR
 c = b → rightChild;
 b → rightChild = c → leftChild;
 a → leftChild = c → rightChild;
 c → leftChild = b;
 c → rightChild = a;
• switch (c→bf) {
•
 case 1: // LR(b)
 a→bf=-1; b→bf=0;
 break;
}
• case -1: // LR(c)
 • b→bf=1; a→bf=0;
 • break;
• case 0: // LR(a)

 b → bf=0; a → bf=0;

 break;

 }

• c → bf=0; b = c; // b is the new root

 } // end of LR

• } // end of left imbalance
else { // right imbalance
 // symmetric to left imbalance
}
// Subtree with root b has been rebalanced.
if (!pa)
 root=b; // A has no parent and a is the root
else if (a==pa→leftChild)
 pa→leftChild=b;
else pa→rightChild=b;
return;
} // end of AVL::Insert
Analysis

• If h is the height of the tree before insertion, the time to insert a new key is $O(h)$.

• In case of AVL tree, h can be at most $O(\log n)$, so the insertion time is $O(\log n)$.

Exercises: P578-3, 5, 9