
Database Management Systems
and Their Implementation

By Xu Lizhen
School of Computer Science and Engineering, Southeast University

Nanjing, China

2Database Management Systems and Their Implementation, Xu Lizhen

Course Goal and its Preliminary Courses

The Preliminary Courses are:

 Data Structure
 Database Principles
 Database Design and Application

The students should already have the basic concepts
about database system, such as data model, data
schema, SQL, DBMS, transaction, database design, etc.

Now we will introduce the implementation
techniques of Database Management Systems.

The goal is to build the foundation of further
research in database field and to use database
system better through the study of this course.

3Database Management Systems and Their Implementation, Xu Lizhen

Main Contents

Introduce the inner implementation
technique of every kind of DBMS,
including the architecture of DBMS, the
support to data model and the
implementation of DBMS core, user
interface, etc. The emphasis is the basic
concepts, the basic principles and the
implementation methods related to
DBMS core.

4Database Management Systems and Their Implementation, Xu Lizhen

Main Contents

Because the relational data model is the mainstream
data model, and distributed DBMS includes all aspects
of classical centralized DBMS, the main thread of this
course is relational distributed database management
system. The implementation of every aspects of DBMS
are introduced according to distributed DBMS. Some
contents of other kinds of DBMS are also introduced,
including federated database systems, parallel database
systems and object-oriented database systems, etc.
Along with the continuous progress of database
technique, new contents will be added at any time.

5

Course History

 Database System Principles (before 1984) ----
relational model theory, some query optimization
algorithms

 Distributed Database Systems (1985~1994) ----
introduce implementation techniques in DDBMS
thoroughly and systemically

 Database Management Systems and Their
Implementation (after 1995) ---- not limited to
DDBMS, hope to introduce the implementation
techniques of DBMS more thoroughly. Along with
the progress of database technique, new contents can
be added without changing the course name.

Database Management Systems and Their Implementation, Xu Lizhen

6Database Management Systems and Their Implementation, Xu Lizhen

References

1) Stefano Ceri, ―Distributed Databases‖

2) Wang Nengbin, ―Principles of Database Systems‖

3) Raghu Ramakrishnan, Johannes Gehrke, ―Database
Management Systems‖ , 3rd Edition, McGraw-Hill
Companies, 2002

4) Hector Garcia-Molina, Jeffrey.D.Ullman, ―Database
Systems: the Complete Book‖

5) S.Bing Yao et al, ―Query Optimization in DDBS‖

6) Courseware:
http://cse.seu.edu.cn/people/lzxu/resource

7Database Management Systems and Their Implementation, Xu Lizhen

Table of Contents

1. Introduction

The history, classification, and main research contents of
database systems; Distributed database system

2. DBMS Architecture

The composition of DBMS and its process structure; The
architecture of distributed database systems

3. Access Management of Database

Physical file organization, index, and access primitives

4. Data Distribution

The fragmentation and distribution of data, distributed
database design, federated database design, parallel database
design, data catalog and its distribution

8Database Management Systems and Their Implementation, Xu Lizhen

Table of Contents

5. Query Optimization

Basic problems; Query optimization techniques; Query
optimization in distributed database systems; Query
optimization in other kinds of DBMS

6. Recovery Mechanism

Basic problems; Updating strategies and recovery techniques;
Recovery mechanism in distributed DBMS

7. Concurrency Control

Basic problems; Concurrency control techniques; Concurrency
control in distributed DBMS; Concurrency control in other
kinds of DBMS

1. Introduction

Database Management Systems and Their Implementation, Xu Lizhen

10Database Management Systems and Their Implementation, Xu Lizhen

1.1 The History of Database Technology
and its Classification

(1) According to the development of data model

 No management(before 1960‘): Scientific computing

 File system: Simple data management

 Demand of data management growing continuously,
DBMS emerged.

 1964, the first DBMS (American): IDS, network

 1969, the first commercial DBMS of IBM, hierarchical

 1970, E.F.Codd(IBM) bring forward relational data model

 Other data model: Object Oriented, deductive, ER, ...

11Database Management Systems and Their Implementation, Xu Lizhen

(2) According to the development of DBMS
architectures

 Centralized database systems

 Parallel database systems

 Distributed database systems (and Federated
database systems)

 Mobile database systems

(3) According to the development of architectures of
application systems based on databases

 Centralized structure : Host＋Terminal

 Distributed structure

 Client/Server structure

 Three tier/multi-tier structure

 Mobile computing

 Grid computing (Data Grid), Cloud Computing

12Database Management Systems and Their Implementation, Xu Lizhen

(4) According to the expanding of application fields

 OLTP

 Engineering Database

 Deductive Database

 Multimedia Database

 Temporal Database

 Spatial Database

 Data Warehouse, OLAP, Data Mining

 XML Database

 Big Data, NoSQL, NewSQL

13Database Management Systems and Their Implementation, Xu Lizhen

14Database Management Systems and Their Implementation, Xu Lizhen

1.2 Distributed Database Systems

What is DDB?

A DDB is a collection of correlated data which are
spread across a network and managed by a software
called DDBMS.

Two kinds:
(1) Distributed physically, centralized logically (general DDB)

(2) Distributed physically, distributed logically too (FDBS)

We take the first as main topic in this course.

15Database Management Systems and Their Implementation, Xu Lizhen

 Distribution

 Correlation

 DDBMS

Features of DDBS :

16Database Management Systems and Their Implementation, Xu Lizhen

The advantages of DDBS:

 Local autonomy

 Good availability (because support multi copies)

 Good flexibility

 Low system cost

 High efficiency (most access processed locally, less
communication comparing to centralized database
system)

 Parallel process

The disadvantages of DDBS:
 Hard to integrate existing databases

 Too complex (system itself and its using, maintenance,
etc. such as DDB design)

17Database Management Systems and Their Implementation, Xu Lizhen

The main problems in DDBS:

Compared to centralized DBMS, the
differences of DDBS are as follows:

 Query Optimization (different optimizing
goal)

 Concurrency control (should consider whole
network)

 Recovery mechanism (failure combination)

Another problem specially for DDBS:

 Data distribution

2. The Architecture of DBMS

Database Management Systems and Their Implementation, Xu Lizhen

19

Main Contains

 The components of DBMS core

 The process structure of DBMS

 The components of DDBMS core

 The process structure of DDBMS

Database Management Systems and Their Implementation, Xu Lizhen

20Database Management Systems and Their Implementation, Xu Lizhen

2.1 The Components of DBMS Core

DBMS core

Database statement

(such as SQL)

App1

Operating system

Disk

Semantic analysis and query treatment

(DDL QL DML DCL)

Grant checking

Parser

Appi

interfacem

Appj

interface1

Concurrency

control

Recovery

mechanism

Access

management

Statement / Program

Access primitive

System call

Grammar tree

I/O command

Message or data

Formatted message or data

Message or data

Message or data

State info. or physical

data block

Appn.

ufi / API . . .

21Database Management Systems and Their Implementation, Xu Lizhen

2.2 The Process Structure of DBMS

 Single process structure

 Multi processes structure

 Multi threads structure

 Communication protocols between
processes / threads

22Database Management Systems and Their Implementation, Xu Lizhen

Single process structure

 The application program is compiled with DBMS core
as a single .exe file, running as a single process.

Application codes

DBMS core (as a function)

SQL statements Result

.exe file

23Database Management Systems and Their Implementation, Xu Lizhen

Multi processes structure

 One application process corresponding to one DBMS
core process

Application

process 1
DBMS core process 1pipe

SQL statements

results

Application

process 2
DBMS core process 2pipe

SQL statements

results

Application

process n
DBMS core process npipe

SQL statements

results

.

.

.

.

.

.

24Database Management Systems and Their Implementation, Xu Lizhen

Multi threads structure

 Only one DBMS process, every application process
corresponding to a DBMS core thread.

catalog lock table bufferDAEMON

D
B

M
S

p
ro

cess

Application

process 1
pipe/socket

SQL statements

results

DBMS core thread 1

pipe/socket
Application

process 2
DBMS core thread 2

SQL statements

results

pipe/socket
Application

process n
DBMS core thread n

SQL statements

results

.

25Database Management Systems and Their Implementation, Xu Lizhen

Communication protocols between processes / threads

 Application programs access databases through API
or embedded SQL offered by DBMS, according to
communication protocol to realize synchronizing
control:

Ad-hoc interface or

application program
DBMS core

Pipe0

Pipe1

State TupNum AttNum AttName AttType AttLen TmpFileName

Definition of one attribute Definition of other attributes

Pipe0: Send SQL statements, inner commands;
Pipe1: return results. The result format:

26Database Management Systems and Their Implementation, Xu Lizhen

Communication protocols between processes / threads

 State: 0 -- error, 1 -- success for insert,delete,update,

2 -- query success, need to treat result further.

 TupNum: tuple number in result.

 AttNum: attribute number in result table.

 AttName: attribute name.

 AttType: attribute type.

 AttLen: byte number of this attribute.

 TmpFileName: name of the temporary file which
store the result data, need the above metadata to
explain it.

27Database Management Systems and Their Implementation, Xu Lizhen

2.3 The Components of DDBMS Core

DB DC

DD
DDBK

LDB1

DB DC

DD
DDBK

LDB2

Site1

Site2

DB: database management

DC: communication control

DD: catalog management

DDBK: core, responsible for

parsing, distributed

transaction management,

concurrency control, recovery

and global query optimization.

28Database Management Systems and Their Implementation, Xu Lizhen

An example of global query optimization

Global query optimization may
get an execution plan based on
cost estimation, such as:

(1)send R2 to site1, R‘

(2)execute on site1:

Select *

From R1, R‘

Where R1.a = R‘.b;

R1 R2

Site1 Site2

Select *
From R1,R2
Where R1.a = R2.b;

29Database Management Systems and Their Implementation, Xu Lizhen

2.4 The Process Structure of DDBMS

LDBMS process

Local database 1

LDBMS process

Local database 2

LDBMS process

Local database 3

Daemon

Site 1

Daemon

Site 2

Daemon

Site 3

DDBMS core thread

Application process 2Application process 1

SQL/result SQL/result

SQL/result SQL/result

SQL/result SQL/result

SQL/result

SQL/result
DDBMS core thread 1

DDBMS core thread 2

DDBMS core thread

3. Database Access Management

Database Management Systems and Their Implementation, Xu Lizhen

31Database Management Systems and Their Implementation, Xu Lizhen

Main Contains

The access to database is transferred to the
operations on files (of OS) eventually. The file
structure and access route offered on it will
affect the speed of data access directly. It is
impossible that one kind of file structure will
be effective for all kinds of data access

 Access types

 File organization

 Index technique

 Access primitives

32Database Management Systems and Their Implementation, Xu Lizhen

Access Types

 Query all or most records of a file (>15%)

 Query some special record

 Query some records (<15%)

 Scope query

 Update

33Database Management Systems and Their Implementation, Xu Lizhen

File Organization

 Heap file: records stored according to their inserted
order, and retrieved sequentially. This is the most
basic and general form of file organization.

 Direct file: the record address is mapped through
hash function according to some attribute‘s value.

 Indexed file: index + heap file/cluster

 Dynamic hashing: p115

 Grid structure file: p118 (suitable for multi attributes
queries)

 Raw disk (notice the difference between the logical
block and physical block of file. You can control
physical blocks in OS by using raw disk)

34Database Management Systems and Their Implementation, Xu Lizhen

Index Technique

 B+ Tree (√ √)

 Clustering index (√)

 Inverted file

 Dynamic hashing

 Grid structure file and partitioned hash function

 Bitmap index (used in data warehouse)

 Others

35Database Management Systems and Their Implementation, Xu Lizhen

Bitmap index – index itself is data

D a te S to r e S ta te C la s s S a le s

3 / 1 / 9 6 3 2 N Y A 6

3 / 1 / 9 6 3 6 M A A 9

3 / 1 / 9 6 3 8 N Y B 5

3 / 1 / 9 6 4 1 C T A 1 1

3 / 1 / 9 6 4 3 N Y A 9

3 / 1 / 9 6 4 6 R I B 3

3 / 1 / 9 6 4 7 C T B 7

3 / 1 / 9 6 4 9 N Y A 1 2

Bitmap Index for Sales

8bit 4bit 2bit 1bit

0 1 1 0

1 0 0 1

0 1 0 1

1 0 1 1

1 0 0 1

0 0 1 1

0 1 1 1

1 1 0 0

for Class

A B C

1 0 0

1 0 0

0 1 0

1 0 0

1 0 0

0 1 0

0 1 0

1 0 0

Bitmap Index for State

AK AR CA CO CT MA NY RI … …

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

Total sales = ? (4*8+4*4+4*2+6*1=62)
How many class A store in NY ? (3)
Sales of class A store in NY = ? (2*8+2*4+1*2+1*1=27)
How many stores in CT ? (2)
Join operation (query product list of class A store in NY)

36Database Management Systems and Their Implementation, Xu Lizhen

Access Primitives (examples)

 int dbopendb(char * dbname)

Function: open a database.

 int dbclosedb(unsigned dbid)

Function: close a database.

 int dbTableInfo(unsigned rid, TableInfo * tinfo)

Function: get the information of the table referenced by rid.

 int dbopen(char * tname,int mode, int flag)

Function: open the table tname and assign a rid for it.

 int dbclose(unsigned rid)
Function: close the table referenced by rid and release the rid.

 int dbrename(oldname, newname)

Function: rename the table.

37Database Management Systems and Their Implementation, Xu Lizhen

Access Primitives (examples)

 int dbcreateattr (unsigned rid , sstree * attrlist)

Function: create some attributes in the table referenced by rid.

 int dbupdateattrbyidx(unsigned rid, int nth, sstree attrinfo)

Function: update the definition of the nth attribute in the table
referenced by rid.

 int dbupdateattrbyname(unsigned rid, char * attrname, sstree
attrinfo)

Function: update the definition of attribute attrname in the table
referenced by rid.

 int dbinsert(unsigned rid, char * tuple, int length, int flag)

Function: insert a tuple into the the table referenced by rid.

38Database Management Systems and Their Implementation, Xu Lizhen

Access Primitives (examples)

 int dbdelete(unsigned rid, long offset, int flag)

Function: delete the tuple specified by offset in the table
referenced by rid.

 int dbupdate(unsigned rid, long offset, char * newtuple, int flag)

Function: update the tuple specified by offset in the table
referenced by rid with newtuple.

 int dbgetrecord(unsigned rid, int nth, char* buf)

Function: fetch out the nth tuple from the table referenced by rid
and put it into buffer buf.

 int dbopenidx(unsigned rid, indexattrstruct * attrarray, int flag)

Function: open the index of the table referenced by rid and
assign a iid for it.

39Database Management Systems and Their Implementation, Xu Lizhen

Access Primitives (examples)

 int dbcloseidx(unsigned iid)

Function: close the index referenced by iid.

 int dbfetch(unsigned rid, char * buf, long offset)

Function: fetch out the tuple specified by offset from the table
referenced by rid and put it into buffer buf.

 int dbfetchtid(unsigned iid, void * pvalue, long*offsetbuf, flag)

Function: fetch out the TIDs of tuples whose value on indexed
attribute has the ―flag‖ relation with pvalue, and put them into
offsetbuf. iid is the reference of the index used.

 int dbpack(unsigned rid)

Function: re-organize the relation, delete the tuples having
deleted flag physically.

4. Data Distribution

Database Management Systems and Their Implementation, Xu Lizhen

41Database Management Systems and Their Implementation, Xu Lizhen

4.1 Strategies of Data Distribution

(1) Centralized: distributed system, but the data
are still stored centralized. It is simplest, but
there is not any advantage of DDB.

(2) Partitioned: data are distributed without
repetition. (no copies)

(3) Replicated: a complete copy of DB at each
site. Good for retrieval-intensive system.

(4) Hybrid (mix of the above): an arbitrary
fraction of DB at various sites. The most
flexible and complex distributing method.

42Database Management Systems and Their Implementation, Xu Lizhen

Comparison of four strategies

1 2 3 4

flexibility

complexity

Advantage of DDBS

Problems with DDBS

43Database Management Systems and Their Implementation, Xu Lizhen

4.2 Unit of Data Distribution

(1) According to relation(or file), that means
non partition

(2) According to fragments

 Horizontal fragmentation: tuple partition

 Vertical fragmentation: attribute partition

 Mixed fragmentation: both

44Database Management Systems and Their Implementation, Xu Lizhen

The criteria of fragmentation:

(1) Completeness: every tuple or attribute must
has its reflection in some fragments.

(2) Reconstruction: should be able to
reconstruct the original global relation.

(3) Disjointness: for horizontal fragmentation.

45Database Management Systems and Their Implementation, Xu Lizhen

(1) Horizontal Fragmentation

Defined by selection operation with predicate, and
reconstructed by union operation.

Fragmentation Methods

Rn fragments (use P1, , P2. . .Pn)
Fulfill: PiPj=false (i≠j)

P1P2. . .Pn=true

SELECT *

FROM R

WHERE P ;

Derived Fragmentation: relation is fragmented not
according to itself‘s attribute, but to another relation‘s
fragmentation.

46Database Management Systems and Their Implementation, Xu Lizhen

An example of Derived Fragmentation

TEACHER(TNAME, DEPT)

COURSE(CNAME,TNAME)

Suppose TEACHER has been fragmented according to
DEPT, we want to fragment COURSE even if there is no
DEPT attribute in it. This will be the fragmentation
derived from TEACHER‘s fragmentation.

Semi join : R ⋉ S = R (R ⋈ S)

TEACHER9 = SELECT * FROM TEACHER

WHERE DEPT=‗9th‘;

COURSE9=COURSE ⋉ TEACHER9

47Database Management Systems and Their Implementation, Xu Lizhen

(2) Vertical Fragmentation

Defined by project operation, and reconstructed by
join operation. Note:

 Completeness: each attribute should appear in at
least one fragment.

 Reconstruction: should fulfill the condition of
lossless join decomposition when fragmentizing.

a. Include a key of original relation in every fragment.

b. Include a TID of original relation produced by
system in every fragment.

48Database Management Systems and Their Implementation, Xu Lizhen

(3) Mixed Fragmentation

Apply fragmentation operations recursively.

Can be showed with a fragmentation tree:

R

R13

R2R1

R12R11

Global relation

Fragments

V

H

49Database Management Systems and Their Implementation, Xu Lizhen

4.3 Different Transparency Level

We can simplify a complex problem through
―information hiding‖ method

 Level 1: Fragmentation Transparency

User only need to know global relations, he
don‘t have to know if they are fragmentized
and how they are distributed. In this
situation, user can not feel the distribution of
data, as if he is using a centralized database.

50Database Management Systems and Their Implementation, Xu Lizhen

 Level 2: Location Transparency

User need to know how the relations are
fragmentized, but he don‘t have to worry the
store location of each fragment.

 Level 3：Local Mapping Transparency

User need to know how the relations are
fragmentized and how they are distributed,
but he don‘t have to worry every local
database managed by what kind of DBMS,
using what DML, etc.

 Level 4：No Transparency

51Database Management Systems and Their Implementation, Xu Lizhen

4.4 Problems Caused by Data Distribution

1) Multi copies‘ consistency
2) Distribution consistency

Mainly the change of tuples‘ store location
resulted by updating operation. Solution:

(1) Redistribution
After Update: Select→Move→Insert→Delete
(2) Piggybacking
Check tuple immediately while updating, if

there is any inconsistency it is sent back along
with ACK information and then sent to the right
place.

52Database Management Systems and Their Implementation, Xu Lizhen

3) Translation of Global Queries to Fragment
Queries and Selection of Physical Copies.

4) Design of Database Fragments and Allocation
of Fragments.

Above 1)~3) should be solved in DDBMS.

While 4) is a problem of distributed database
design.

53Database Management Systems and Their Implementation, Xu Lizhen

4.5 Distributed Database Design

1) Distributed database

 The design of fragments

 The design of fragment distribution solution

To understand user’s requirements, we
should ask the following questions to every
application while requirement analysis:

 The sites where this application may occur

 The frequency of this application

 The data object accessed by this application

54Database Management Systems and Their Implementation, Xu Lizhen

Design flow of centralized database

Requirement Analysis

Concept Design

Logic Design

Physical Design

Information
requirement

Process
requirement

Requirement
indication

DBMS feature

Hardware, OS feature

DBMS independent
data schema

Outer schema,
concept schema

Inner schema

A

55Database Management Systems and Their Implementation, Xu Lizhen

Design flow of distributed database

A

Fragmentation Design

Distribution Design

Physical design of each site

Information

requirement

Process

requirement

Concept schema DDBMS feature

Hardware, OS feature of each site

Distribution units

Local schema of

every site

Inner schema

B

56Database Management Systems and Their Implementation, Xu Lizhen

(1) Fragmentation design

In DDB, it is not true that the fragments should be
divided as fine as possible. It should be fragmentized
according to the requirement of application. For
example, there are following two applications:

App1: SELECT GRADE FROM STUDENT

WHERE DEPT=‗9th‘ AND AGE>20;

App2: SELECT AVG(GRADE)

FROM STUDENT

WHERE SEX=‗Male‘;

Problem:

if STUDENT should be fragmentized horizontally
according to DEPT?

57Database Management Systems and Their Implementation, Xu Lizhen

General rules:

① Select some important typical applications which
occur often.

② Analyze the local feature of the data accessed by
these applications.

 For horizontal fragmentation:

③ Select suitable predicate to fragmentize the global
relations to fit the local requirement of each site. If
there is any contradiction, consider the need of more
important application.

④ Analyze the join operations in applications to decide
if derived fragmentation is needed.

58Database Management Systems and Their Implementation, Xu Lizhen

 For vertical fragmentation:

③ Analyze the affinity between attributes, and
consider:

 Save storage space and I/O cost

 Security. Some attributes should not be seen
by some users.

(2) Distribution design

Through cost estimation, decide the suitable
store location (site) of each distribution unit.
p252

59Database Management Systems and Their Implementation, Xu Lizhen

2) Parallel database

 What is parallel database system?

 Share Noting (SN) structure

 Vertical parallel and horizontal parallel

 A complex query can be decomposed into several
operation steps, the parallel process of these steps is
called vertical parallel.

 For the scan operation, if the relation to be scanned is
fragmentized beforehand into several fragments, and
stored on different disks of a SN structured parallel
computer, then the scan can be processed on these
disk in parallel. This kind of parallel is called
horizontal parallel.

60Database Management Systems and Their Implementation, Xu Lizhen

Example:

SELECT *

FROM R,S

WHERE R.a=S.a AND
R.b>20 AND
S.c<10;

R’=σ b>20(R)

S’=σ c<10(S)

R’ ⋈ S’

Vertical

parallel

Horizontal

parallel

The precondition of horizontal parallel is that R, S are
fragmentized beforehand and stored on different disks of a
SN structured parallel computer. This is the main problem
should be solved in PDB design.

61Database Management Systems and Their Implementation, Xu Lizhen

Design flow of parallel database

A

Fragmentation Design

Distribution design of data on different

disks of the parallel computer

Physical design of each disk

Information

requirement

Process

requirement

Concept schema

PDBMS feature and

the feature of

parallel computer

system used

Distribution units

Local schema of

every disk

Inner schema

C

62Database Management Systems and Their Implementation, Xu Lizhen

Data fragmentation mode in PDB

(1)Arbitrary

Fragmentize relation R in arbitrary mode,
then stored these fragments on the disk of
different processor. For example, R may be
divided averagely, or hashed into several
fragments, etc.

(2)Based on expression

Put the tuples fulfill some condition into a
fragment. Suitable for the situation in which the
most query are based on fragmentation
conditions. --- excluded respectively.

63Database Management Systems and Their Implementation, Xu Lizhen

The difference between PDB and DDB about data
fragmentation and distribution

PDB DDB

The goal of
fragmentation
and
distribution

Promote parallel process
degree, use the parallel
computer‘s ability as
adequately as possible

Promote the local degree of
data access, reduce the data
transferred on network

Fragmentation
in accordance
with

PDBMS feature and the
feature of parallel computer
system used, combining
application requirements.

Application requirements,
combining the feature of
DDBMS used.

Distribution
mode

On multi disks of a parallel
computer

On multi sites in the
network

64Database Management Systems and Their Implementation, Xu Lizhen

Design flow of DDB with PDB as local database

B

C

Local physical design

of general DDB

If site i is a parallel

computer?

Inner schema

Y

N

65Database Management Systems and Their Implementation, Xu Lizhen

3) Federated database

 In practical applications, there are strong
requirements for solving the integration of multi
existing, distributed and heterogeneous databases.

 The database system in which every member is
autonomic and collaborate each other based on
negotiation --- federated database system.

 No global schema in federated database system,
every federated member keeps its own data schema.

 The members negotiate each other to decide
respective input/output schema, then, the data
sharing relations between each other are established.

66Database Management Systems and Their Implementation, Xu Lizhen

The schema structure in federated database System

FS1 FS3FS2

IS3IS2IS1

ES3ES2ES1

CS3CS2CS1

DB1 DB2 DB3

Site1 Site3Site2

67Database Management Systems and Their Implementation, Xu Lizhen

 FSi = CSi + ISi

 FSi is all of the data available for the users on sitei.

 ISi is gained through the negotiation with ESj of other
sites (ji).

 User‘s query on FSi  the sub-queries on CSi and ISi

 the sub-queries on corresponding ESj.

 The results gained from ESj  the result forms of
corresponding ISi, and combined with the results get
from the sub-queries on CSi, then synthesized to the
eventual result form of FSi.

68Database Management Systems and Their Implementation, Xu Lizhen

4.6 The Distribution of Catalog

Catalog --- Data about data (Metadata).

Its main function is to transfer the user‘s operating
demands to the physical targets in system.

4.6.1 Contents of Catalogs

(1) The type of each data object (such as base table,
view, . . .) and its schema

(2) Distribution information (such as fragment
location, . . .)

(3) Access routing (such as index, . . .)

(4) Grant information

(5) Some statistic information used in query
optimization

69Database Management Systems and Their Implementation, Xu Lizhen

(1)~(4) are not changed frequently, while (5) will
change on every update operation. For it:

 Update it periodically

 Update it after every update operation

4.6.2 The features of catalog

(1) mainly read operation on it

(2) very important to the efficiency and the data
distribution transparency of the system

(3) very important to site autonomy

(4) the distribution of catalog is decided by the
architecture of DDBMS, not by application
requirements

70Database Management Systems and Their Implementation, Xu Lizhen

4.6.3 Distribution strategies of catalog

(1) Centralized

 A complete catalog stored at one site.

 Extended centralized catalog: centralized at
first; saved after being used; notify while
there is update

(2) Fully replicated: catalogs are replicated at
each site. Simple in retrieval. Complex in
update. Poor in autonomy.

(3) Local catalog: catalogs for local data are
stored at each site. That means catalogs are
stored along with data.

71Database Management Systems and Their Implementation, Xu Lizhen

If want the catalog information about data on other site
(look for through broadcast):

 Master catalog: store a complete catalog on some site.
Make every catalog information has two copies.

 Cache: after getting and using the catalog information
about data on other site through broadcast, save it for
future use (cache it). Update the catalog cached
through the comparison of version number.

R

R’s catalog(Ver No.) Cache of R’s catalog

(Ver No.)

72Database Management Systems and Their Implementation, Xu Lizhen

(4) Different Combination of the above

Use different strategy to different contents of
catalog, and then get different combination
strategies. Such as:

a. Use fully replicated strategy to distribution
information (2), use local catalog strategy to
other parts.

b. Use local catalog strategy to statistic
information, use fully replicated strategy to
other parts.

73Database Management Systems and Their Implementation, Xu Lizhen

4.6.4 Catalog management in R*
--- Site autonomy

 Characteristics:

 There is no global catalog

 Independent naming and data definition

 The catalog grows reposefully

 The most important concept --- System Wide Name
(SWN)

<SWN>::=User@UserSite.ObjectName@BirthSite

 ObjectName: the name given by user for the data
object

 User: user‘s name. With this, different users can
access different data object using the same name.

74Database Management Systems and Their Implementation, Xu Lizhen

 UserSite: the ID of the site where the User is. With
this, different users on different sites can use the same
user name.

 BirthSite: the birth site of the data object. There is no
global catalog in R* system. At the BirthSite the
information about the data is always kept even the
data is migrated to other site.

 Print Name (PN): user used normally when they
access a data object.

<PN>::=[User[@UserSite].]ObjectName[@BirthSite]

75Database Management Systems and Their Implementation, Xu Lizhen

Name Resolution --- Mapping PN to SWN

Establish a synonym table for each
user using ―Define Synonym ...”
statement.

ObjectName SWN

┇ ┇

Mapping PN in different forms according to
following rules:

1) PrintName = SWN, need not transform

2) Only have ObjectName: search ―ObjectName‖ in
the synonym table of current user on current site.

3) User.ObjectName: search the synonym table of
user ―User‖ on current site.

4) User@UserSite.ObjectName

76Database Management Systems and Their Implementation, Xu Lizhen

5) ObjectName@BirthSite

If no match for the ObjectName is found in (2), (3) or
print name is in the form of (4) or (5), name
completion is used.

Name completion rule:

 A missing User is replaced by current User.

 A missing UserSite or BirthSite is replaced by current
site ID.

Name Resolution --- Mapping PN to SWN

5. Query Optimization

Database Management Systems and Their Implementation, Xu Lizhen

78Database Management Systems and Their Implementation, Xu Lizhen

Introduction

 “Rewrite‖ the query statements
submitted by user first, and then
decide the most effective operating
method and steps to get the result.

 The goal is to gain the result of user‘s
query with the lowest cost and in
shortest time.

79

5.1 Summary of Query Optimization in
DDBMS

 Global Query: a query over global
relation.

 Fragment Query: a query over
fragments.

Database Management Systems and Their Implementation, Xu Lizhen

80Database Management Systems and Their Implementation, Xu Lizhen

General flow

Global Query

Transfer it to fragment queries

1) Transform the queries tree into the most effective form

2) Query decomposition (into several sub queries which can be

executed locally)

3) Decide the order and site of the operations

Execute each operation according to the schedule in query plan

Query result

Query tree

Query plan

G
lo

b
al O

p
tim

izatio
n

L
o

cal O
p

tim
izatio

n

Algebra optimization

Operation optimization

81Database Management Systems and Their Implementation, Xu Lizhen

Example

S(SNUM, SNAME, CITY)

SP(SNUM, PNUM, QUAN)

P(PNUM, PNAME, WEIGHT, SIZE)

Suppose the fragmentation is as following:

S1 = σCITY=‗Nanjing‘(S)

S2 = σCITY=‗Shanghai‘(S)

SP1 = SP ⋉ S1

SP2 = SP ⋉ S2

82Database Management Systems and Their Implementation, Xu Lizhen

Global Query:

SELECT SNAME

FROM S, SP, P

WHERE S.SNUM=SP.SNUM AND

SP.PNUM=P.PNUM AND

S.CITY=‗Nanjing‘ AND

P.PNAME=‗Bolt‘ AND

SP.QUAN>1000;

83Database Management Systems and Their Implementation, Xu Lizhen

Query tree

⋃

S1 S2

(S.SNAME)

⋈

⋈

σ1 CITY=‘Nanjing’ σ2 QUAN>1000

σ3 P.PNAME=‘Bolt’

P

SP.PNUM=P.PNUM

S.SNUM=SP.SNUM

S SP⋃

SP1 SP2

84Database Management Systems and Their Implementation, Xu Lizhen

After equivalent transform (Algebra optimization) :

⋃

S1 S2

(S.SNAME)

⋈

⋈ σ3

P

SP.PNUM=P.PNUM

S.SNUM=SP.SNUM

⋃

SP1 SP2

3

11 22
σ2σ2 σ1σ1

1= (S.SNUM,S.SNAME)

2= (SP.SNUM,SP.PNUM)

3= (P.PNUM)S1’ S2’ SP1’ SP2’

P’

85Database Management Systems and Their Implementation, Xu Lizhen

The result of equivalent transform

⋃

S1’ S2’

(S.SNAME)

⋈

⋈ P’

SP.PNUM=P.PNUM

S.SNUM=SP.SNUM

⋃

SP1’ SP2’

86Database Management Systems and Their Implementation, Xu Lizhen

The operation optimization of the sub tree (yellow) :

 First consider distributed JN: (1) (S1‘ ⋃ S2‘) ⋈ (SP1‘ ⋃ SP2‘)

(2) Distributed Join

 Then consider ―Site Selection‖, may produce many combination

 For every join operation, there are many computing method:

⋈

SR
Site jSite i

R  Site j, R ⋈ S

S  Site i, R ⋈ S

JN Attr.(S)  Site i, R ⋉ S  Site j, (R ⋉ S) ⋈ S

┇

The goal of query optimization is to select a ―good‖ solution from
so many possible execution strategies. So it is a complex task.

87Database Management Systems and Their Implementation, Xu Lizhen

5.2 The Equivalent Transform of a Query

That is so called algebra optimization. It takes a series of
transform on original query expression, and transform it
into an equivalent, most effective form to be executed.
For example: NAME,DEPTDEPT=15(EMP)≡DEPT =15 NAME,DEPT (EMP)

(1)Query tree

For example: SNUMAREA=‗NORTH‘(SUPPLY ⋈DEPTNUM DEPT)

(SNUM)

⋈

σ AREA = ‗North‘

DEPT

DEPTNUM=DEPTNUM

Supply

Leaves: global relation
Middle nodes: unary/binary
operations
Leaves  root: the executing
order of operations

88Database Management Systems and Their Implementation, Xu Lizhen

(2) The equivalent transform rules of relational algebra

1) Exchange rule of ⋈/×: E1 × E2 ≡ E2 ×E1

2) Combination rule of ⋈/×: E1×(E2×E3) ≡ (E1×E2)×E3

3) Cluster rule of : A1…An(B1…Bm(E)) ≡ A1…An(E),
legal when A1…An is the sub set of {B1…Bm}

4) Cluster rule of : F1(F2(E)) ≡ F1∧F2(E)

5) Exchange rule of  and : F(A1…An(E)) ≡ A1…An (F(E))

if F includes attributes B1…Bm which don‘t belong to
A1…An, then A1…An (F(E)) ≡ A1…An F(A1…An， B1…Bm(E))

6) If the attributes in F are all the attributes in E1, then

F(E1×E2) ≡ F(E1)×E2

89Database Management Systems and Their Implementation, Xu Lizhen

if F in the form of F1∧F2, and there are only E1‘s
attributes in F1, and there are only E2‘s attributes in
F2, then F(E1×E2) ≡ F1(E1)×F2(E2)

if F in the form of F1∧F2, and there are only E1‘s
attributes in F1, while F2 includes the attributes both
in E1 and E2, then F(E1×E2) ≡ F2(F1(E1)×E2)

7) F(E1 ⋃ E2) ≡ F(E1) ⋃ F(E2)

8) F(E1 - E2) ≡ F(E1) - F(E2)

9) Suppose A1…An is a set of attributes, in which
B1…Bm are E1‘s attributes, and C1…Ck are E2‘s
attributes, then

A1…An(E1×E2) ≡ B1…Bm(E1)×C1…Ck(E2)

90Database Management Systems and Their Implementation, Xu Lizhen

10) A1…An(E1 ⋃ E2) ≡ A1…An(E1) ⋃ A1…An(E2)
From the above we can see, the goal of algebra
optimization is to simplify the execution of the query,
and the target is to make the scale of the operands
which involved in binary operations be as small as
possible.

(SNUM)

⋈

(DEPTNUM)

DEPTNUM=DEPTNUM

(SNUM, DEPTNUM)

Supply DEPT

σ AREA = ‗North‘

(3) The general
procedure of algebra
optimization please
refer to p118.

91Database Management Systems and Their Implementation, Xu Lizhen

5.3 Transform Global Queries into
Fragment Queries

 Methods:

 For horizontal fragmentation: R = R1 ⋃ R2 ⋃ … ⋃ Rn

 For vertical fragmentation: S = S1 ⋈ S2 ⋈ … ⋈ Sn

Replace the global relation in query expression with the above.
The expression we get is called canonical expression

 Transform the canonical expression with the equivalent
transform rules introduced above. Principles:

1) Push down the unary operations as low as possible

2) Look for and combine the common sub-expression

 Definition: the sub-expression which occurs more than once in
the same query expression. If find this kind of sub-expression
and compute it only once, it will promote query efficiency.

92Database Management Systems and Their Implementation, Xu Lizhen

 General method:

(1) combine the same leaves in the query tree

(2) combine the middle nodes corresponding to the
same operation with the same operands.

 example: emp.name(emp ⋈ (mgrnum=373 dept) –

(sal>35000 emp) ⋈ (mgrnum=373 dept))

 emp.name

⋈ deptnum = deptnum

dept

⋈

-

σmgrnum=373

emp
dept

σmgrnum=373σsal>35000

emp

①combine
②combine

④move up

⑤combine
③combine

93Database Management Systems and Their Implementation, Xu Lizhen

 emp.name

deptnum⋈

-

dept

σmgrnum=373

σsal>35000

emp

Common sub-expression:
emp ⋈ (mgrnum=373 dept)

Properties:
 R ⋈ R ≡ R
 R ⋃ R ≡ R
 R －R ≡ Φ
 R ⋈ F(R) ≡ F(R)
 R ⋃ F(R) ≡ R
 R－ F(R) ≡ not F R
 F1(R) ⋈ F2(R) ≡ F1∧F2(R)
 F1(R) ⋃ F2(R) ≡ F1∨F2(R)
 F1(R)－F2(R) ≡ F1∧not F2(R)

94Database Management Systems and Their Implementation, Xu Lizhen

 emp.name

deptnum⋈

dept

σmgrnum=373

σsal<=35000

emp

 emp.name

deptnum⋈

deptemp

(name,deptnum) (deptnum)

σmgrnum=373σsal<=35000

Notice: The last query tree is which can be given by
an expert at first. The goal of algebra optimization is
to optimize the query expression which is not
submitted in best form at first.

95Database Management Systems and Their Implementation, Xu Lizhen

3) Find and eliminate the empty sub-expression

⋃

dept2

deptnum<=10

σdeptnum=1

dept1

Example:

dept3

10<deptnum<=20 deptnum>20

dept1

σdeptnum=1

4) Eliminate useless vertical fragments

A

⋈

R2

σF

R1

If A U Attr(F)  Attr(R1)

A

σF

R1

96Database Management Systems and Their Implementation, Xu Lizhen

5.4 Query Decomposition

Considering the sites on which the fragments are stored,
need to decompose the query into several sub-queries
which can be executed locally on different sites:

⋃

R1 R2



⋈

⋈

R6⋃

R3 R4

21 43
σ4σ3σ2σ1

⋃

R5

6
σ6

5
σ5

Suppose: Ri
j — fragment

Ri which stored on site j.1 111

2 3

97Database Management Systems and Their Implementation, Xu Lizhen

Decomposition method :

Traverse the query tree in post-order, until j become 2,
then get the first sub-tree. The rest may be deduced by
analogy, so we can get all of the sub-trees.

R4
1

⋃

R1
1 R2

1

⋈

⋃

R3
1

21 43
σ4σ3σ2σ1

R1

R5

5
σ5

R2

R6

6
σ6

R3 

⋈

⋃R1

R2 R3

Site1 Site3Site2 Assembling tree

98Database Management Systems and Their Implementation, Xu Lizhen

5.5 The Optimization of Binary
Operations

The executions of local sub-queries are responsible by
local DBMS. The query optimization of DDBMS is
responsible for the global optimization, that is the
execution of assembling tree.

Because the executions of unary operations are
responsible by local DBMS after algebra optimization
and query decomposition, the global optimization of
DDBMS only need to consider the binary operations,
mainly the join operation.

How to find a ―good‖ access strategy to compute the
query improved by algebra optimization is introduced
in this section.

99Database Management Systems and Their Implementation, Xu Lizhen

I. Main problems in global optimization

1) Materialization: select suitable copies of
fragments which involved in the query

2) Strategies for join operation

Non_distributed join:
(R2 U R3) ⋈ R1

Distributed join:
(R1 ⋈ R2) ⋃ (R1 ⋈R3)

Direct join

Use of semi_join

3) Select execution of each operation (mainly to
direct join)

100Database Management Systems and Their Implementation, Xu Lizhen

 Nested loop: one relation acts as outer loop relation
(O), the other acts as inner loop relation (I). For
every tuple in O, scan I one time to check join
condition.

Because the relation is accessed from disk in the
unit of block, we can use block buffer to improve
efficiency. For R ⋈ S, if let R as O, S as I, bR is
physical block number of R, bS is physical block
number of S, there are nB block buffers in system
(nB>=2), and nB-1 buffers used for O, one buffer
used for I, then the total disk access times needed
to compute R ⋈ S is:

bR＋
┌bR/(nB-1)┐×bS

101Database Management Systems and Their Implementation, Xu Lizhen

 Merge scan: order the relation R and S on disk in
ahead, then we can compare their tuples in order,
and both relation only need to scan one time. If R
and S have not ordered in ahead, must consider the
ordering cost to see if it is worth to use this method
(p122)

 Using index or hash to look for mapping tuples: in
nested loop method, if there is suitable access route
on I (say B+ tree index), it can be used to substitute
sequence scan. It is best when there is cluster index or
hash on join attributes.

 Hash join: because the join attributes of R and S have
the same domain, R and S can be hashed into the
same hash file using the same hash function, then R
⋈ S can be computed based on the hash file.

102Database Management Systems and Their Implementation, Xu Lizhen

 The above are all classical algorithms in centralized
DBMS. The idea is similar when computing join in
DDBMS using direct join strategy.

II. Three general optimization methods:
1) By cost comparison (also called exhaustive search)
2) By heuristic rule: generally used in small systems.

(p124)
3) Combination of 1, 2: eliminate the solutions

unsuitable obviously by using 2 to reduce solution
space, then use 1 to compare cost of the rest
solutions carefully.

III. Cost estimation
Total query cost=Processing cost+Transmission cost

103Database Management Systems and Their Implementation, Xu Lizhen

According to different environment:

 For wide area network: the transfer rate is about
100bps~50Kbps, far slow than processing speed in
computer, so Processing cost can be omitted.

 For local area network: the transfer rate will reach
1000Mbps, both items should be considered.

1) Transmission cost

TC(x)=C0 + C1x

x: the amount of data transferred; C0: cost of
initialization; C1: cost of transferring one data unit on
network. C0 , C1 rely on the features of the network
used.

104Database Management Systems and Their Implementation, Xu Lizhen

2)Processing cost

Processing cost = costcpu + costI/O

costcpu can be omitted generally.

cost of one I/O = D0 + D1

D0: the average time looking for track (ms);

D1: time of one data unit I/O (s, can be omitted)

costI/O = no. of I/O×D0

 Notice: calculate query cost accurately is unnecessary
and unpractical. The goal is to find a good solution
through the comparison between different solutions,
so only need to estimate the execution cost of
different solutions under the same execution
environment.

105Database Management Systems and Their Implementation, Xu Lizhen

5.6 Implement Join Operation With
Semi_join

I. The role of semi_join

Semi_join is used to reduce transmission cost. So it is
suitable for WAN only.

R ⋉ S = R(R ⋈ S)

if R and S are stored on site 1 and 2 respectively, the
steps to realize R ⋈ S with ⋉ is as following:

1) Transfer A(S)  site1, A is join attribute

2) Execute R ⋈ A(S) = R ⋉ S on site1 (compress R)

3) Transfer R ⋉ S  site2

4) Execute (R ⋉ S) ⋈ S = R ⋈ S on site2

106Database Management Systems and Their Implementation, Xu Lizhen

Cost comparison

 Cost of direct join = C0 + C1min(r, s) ------ ①

r, s --- |R|, |S| (size of the relations)

 Cost of join via semi_join =

min(2C0 + C1s‘ + C1r‖, 2C0 + C1r‘ + C1s‖) =

2C0+C1min(s‘ + r‖, r‘ + s‖) ------ ②

s‘, r‘ --- |A(S)|, |A(R)|

s‖, r‖ --- |S ⋉ R|, |R ⋉ S|

 Only when ②<①, use of semi_join is cost-efficient :

(1) C0 must be small

(2) unsuitable for using multi semi_join

(3) the size of R or S should be reduced greatly through
semi_join

107Database Management Systems and Their Implementation, Xu Lizhen

II. Comments on semi_join

1) The reduce on transmission cost through ⋉ is gained
through the sacrifice on processing cost.

2) There are many candidate solutions of semi_join.

For example : for the query R1 ⋈ R2 ⋈ R3… ⋈ Rn,
consider the ⋉ to R1, maybe:

R1 ⋉ R2, R1 ⋉ (R2 ⋉ R1), R1 ⋉ (R2 ⋉ R3), …

it is almost impossible to select the best from all
possible solutions.

3) Bernstein‘s remark

⋉ can be regarded as reducers.

 Definition: A chain of semi_join to reduce R is called
reducer program for R.

108Database Management Systems and Their Implementation, Xu Lizhen

 RED(Q, R): A set of all reducer programs for R in
query Q.

 Full reducer: the reducer which conforms to the
following conditions:

(1) RED(Q, R)

(2) reduce R mostly

 But full reducer is not the target which should be
pursued in query optimization.

example1: Q is a query with qualification:

q = (R1.A=R2.B)∧(R1.C=R3.D)∧(R2.E=R4.F)∧
(R3.G=R5.H)∧(R3.J=R6.K)

109Database Management Systems and Their Implementation, Xu Lizhen

Query graph:

Link the two relations with a line if there is
⋈ between them, then we can get the
query graph. The query whose query
graph like the left graph is called tree
query (TQ)。

R1

R2 R3

R5 R6R4

Example 2: q = (R1.A=R2.B)∧(R2.C=R3.D)∧(R3.E=R1.F)

R1

R2 R3

The query whose query graph like the left
graph is called cyclic query (CQ)。

Example 3: q = (R1.A=R2.B)∧(R2.B=R3.C)∧(R3.C=R1.A)

This is a TQ, not a CQ, because R3.C=R1.A can be obtained
from transfer relation, it is not a independent condition.

110Database Management Systems and Their Implementation, Xu Lizhen

Can be proved:

1) Full reducer exists for TQ.

2) No full reducer exists for CQ in many cases.

R1 A B

0 1

3 4

R2 C D

1 2

4 5

R3 E F

2 3

5 0

q = (R1.B=R2.C)∧(R2.D=R3.E)∧(R3.F=R1.A)

Even if the result of this query is empty, the size of any
one of R1, R2 and R3 can not be decreased through⋉ . So
there is not full reducer for this query.

111Database Management Systems and Their Implementation, Xu Lizhen

Another example about full reducer of CQ

q = (R.B=S.B)∧(S.C=T.C)∧(T.A=R.A), is there full reducer?

R A B

1 a

2 b

3 c

S B C

a x

b y

c z

T C A

x 2

y 3

z 4

R‘=R ⋉ T=
A B

2 b

3 c

S‘=S ⋉ R‘=
B C

b y

c z

T‘=T ⋉ S‘=
C A

y 3

z 4

R‖=R‘ ⋉ T‘=
A B

3 c
S‖=S‘ ⋉ R‖= T‖=T‘ ⋉ S‖=

B C

c z

C A

z 4

112Database Management Systems and Their Implementation, Xu Lizhen

R‖‘=R‖ ⋉ T‖=Φ, So the full reducer of relation R in
query q is :

①R‘=R ⋉ T ②S‘=S ⋉ R‘ ③T‘=T ⋉ S‘ ④R‖=R‘ ⋉ T‘

⑤S‖=S‘ ⋉ R‖⑥T‖=T‘ ⋉ S‖⑦R‖‘=R‖ ⋉ T‖= Φ

Conclusion:

 For CQ: there is no full reducer in general. Even if
there is, its length increases linearly along with the
number of tuples of some relation in the query. (about
3(m-1))

 For TQ: the length of full reducer < n-1 (n is the
number of nodes in the query graph).

 So the full reducer can not be the optimization target
when execute join operation under distributed
environment through ⋉.

113Database Management Systems and Their Implementation, Xu Lizhen

SDD-1 Algorithm: heuristic rule (p189~190)

5.7 Direct Join

--- Implementation method of join operation in R*

I. Two basic implementation method of join operation

 Nested Loop: the extension of corresponding
algorithm in centralized DBMS

cost = (bR +
┌bR/(nB - 1)┐* bS) * D0

 Merge Scan: the extension of corresponding
algorithm in centralized DBMS

cost = (bR + bS) * D0 + Costsort(R) + Costsort(S)

114Database Management Systems and Their Implementation, Xu Lizhen

II. Transmission of relations in these two methods

1) “shipped whole” : The whole relation is shipped
without selections.

 For I, a temporary relation is established at the
destination site for further use.

 For O, the relation doesn‘t need storing.

2) “Fetch as need” : The whole relation is not shipped.
The tuples needed by the remote site are sent at its
request. The request message usually contains the value
of join attribute.

Usually there is an index on the join attribute at the
requested site.

115Database Management Systems and Their Implementation, Xu Lizhen

III. Six implementation strategies of join in R*

Nested Loop O: shipped whole

I : fetch as needed

Merge Scan O: shipped whole

I : shipped whole

fetch as needed

Shipping whole O and I to a 3rd site (NL or MS)

 It is obvious that O should be shipped whole.

 In NL, if I is shipped whole, index can‘t be shipped
along with it, moreover temporary relation is
required. Both processing cost and storage cost are
high.

116Database Management Systems and Their Implementation, Xu Lizhen

Six strategies don’t include:

 Multiple join --- transformed into multi
binary joins.

 Copy selection --- because R* doesn‘t
support multi copies.

5.8Distributed Grouping & Aggregate Function
Evaluation

SELECT PNUM, SUM(QUAN)

FROM SP

GROUP BY PNUM;

That is : GBPNUM, SUM(QUAN)SP

117Database Management Systems and Their Implementation, Xu Lizhen

There are the following conclusions about grouping &
aggregate function evaluation in distributed computing
environment :

1) Suppose Gi is a group gotten through grouping to R1 ⋃ R2

according to some attribute set, iff GiRj OR GiRj = Φ for all i, j
------ (SNC), then :

GBG, AF(R1 ⋃ R2) = (GBG, AFR1) ⋃ (GBG, AFR2)

For example:

SELECT SNUM, AVG(QUAN) FROM SP GROUP BY SNUM;

 If SP is derived fragmented according to the supplier‘s city:
conform to SNC, so the grouping & aggregate can be evaluated
distributed.

 If SP is derived fragmented according to the part‘s type: don‘t
conform to SNC, because the same supplier may provide more
than one kinds of part at same time. In this situation the
grouping & aggregate can not be evaluated distributed.

118Database Management Systems and Their Implementation, Xu Lizhen

2) If SNC does not hold, it is still possible to compute
some aggregate functions of global relation
distributed

Suppose global relation: S

fragments: S1, S2, …, Sn

then:

SUM(S) = SUM(SUM(S1), SUM(S2), …, SUM(Sn))

COUNT(S) = SUM(COUNT(S1), … COUNT(Sn))

AVG(S) = SUM(S)/COUNT(S)

MIN(S) = MIN(MIN(S1), MIN(S2), …, MIN(Sn))

MAX(S) = MAX(MAX(S1), MAX(S2), …, MAX(Sn))

119Database Management Systems and Their Implementation, Xu Lizhen

5.9 Update Strategies

The consistency between multi copies must be
considered while executing update, because any
data may have multi copies in DDB.

1) Updating all strategy

The update will fail if any one of copies is
unavailable.

p --- probability of availability of a copy.

n --- No. of copies

The probability of success of the update=pn

0lim 


n

n

p

120Database Management Systems and Their Implementation, Xu Lizhen

2) Updating all available sites immediately and
keeping the update data at spooling site for
unavailable sites, which are applied to that site
as soon as it is up again.

3) Primary copy updating strategy

Assign a copy as primary copy. The remaining
copies called secondary copies.

Update : update P.C, then P.C broadcast the
update to S.Cs at sometimes.

P.C maybe inconsistent with S.C temporarily.
There is no problem if the next operation is still
update. While if the next operation is a read to
some S.C, then:

121Database Management Systems and Their Implementation, Xu Lizhen

Compare the version No. of S.C with that of
P.C, if version No. are equal, read S.C directly;
else:

(1) redirect the read to P.C

(2) wait the update of S.C

4) Snapshot

Snapshot is a kind of copy image not
followed the changes in DB.

 Master copy at one site, many snapshots are
distributed at other sites.

 Update: master copy only.

122Database Management Systems and Their Implementation, Xu Lizhen

 Read: master copy

snapshots
is indicated by users

 The snapshot can be refreshed:

(1) periodically

(2) forced refreshing by REFRESH command

 Snapshot is suitable for the application
systems in which there is less update, such as
census system, etc.

6. Recovery

Database Management Systems and Their Implementation, Xu Lizhen

124Database Management Systems and Their Implementation, Xu Lizhen

6.1 Introduction

The main roles of recovery mechanism in DBMS are:

(1) Reducing the likelihood of failures (prevention)

(2) Recover from failures (solving)

Restore DB to a consistent state after some failures.

 Redundancy is necessary.

 Should inspect all possible failures.

 General method:

125Database Management Systems and Their Implementation, Xu Lizhen

1) Periodical dumping

 Variation : Backup + Incremental dumping

I.D --- updated parts of DB

t
dumping dumping failure

Update lost

t
Backup I.D failureI.D

Update lost

This method is easy to be implemented and the
overhead is low, but the update maybe lost after failure
occurring. So it is often used in file system or small
DBMS.

126Database Management Systems and Their Implementation, Xu Lizhen

2) Backup + Log

Log : record of all changes on DB since the last
backup copy was made.

Change:
Old value (before image --- B.I)
New value (after image --- A.I)

Recorded
into Log

For update op. : B.I A.I

insert op. : ---- A.I

delete op. : B.I ----

t
Backup failureLog

127Database Management Systems and Their Implementation, Xu Lizhen

While recovering:

 Some transactions maybe half done, should
undo them with B.I recorded in Log.

 Some transactions have finished but the
results have not been written into DB in time,
should redo them with A.I recorded in Log.
(finish writing into DB)

It is possible to recover DB to the most recent
consistent state with Log.

128Database Management Systems and Their Implementation, Xu Lizhen

3) Multiple Copies

Advantages:

(1) increase reliability

(2) recovery is very easy

Problems:

(1) difficult to acquire independent failure modes in
centralized database systems.

(2) waste in storage space

So this method is not suitable for Centralized DBMS.

There are multi copies for every data object. Recovered
with other copies while failure occurs. The system
cannot be collapsed because of some copy‘s failure.

129Database Management Systems and Their Implementation, Xu Lizhen

6.2 Transaction

A transaction T is a finite sequence of actions on
DB exhibiting the following effects:

 Atomic action: Nothing or All.

 Consistency preservation: consistency state of
DB  another consistency state of DB.

 Isolation: concurrent transactions should run
as if they are independent each other.

 Durability:The effects of a successfully
completed transaction are permanently
reflected in DB and recoverable even failure
occurs later.

130Database Management Systems and Their Implementation, Xu Lizhen

Example: transfer money s from account A to account B

Begin transaction

read A

A:=A-s

if A<0 then Display ―insufficient fund‖

Rollback /*undo and terminate */

else B:=B+s

Display ―transfer complete‖

Commit /*commit the update and terminate */

Rollback --- abnormal termination. (Nothing)

Commit --- normal termination. (All)

131Database Management Systems and Their Implementation, Xu Lizhen

6.3 Some Structures to Support Recovery

Recovery information (such as Log) should be stored in
nonvolatile storage. The following information need to
be stored in order to support recovery:

1) Commit list : list of TID which have been committed.

2) Active list : list of TID which is in progress.

3) Log :

TID

┇

┇

BID

BID

BID

BID

┇ ┇

After
image

Before
image

132Database Management Systems and Their Implementation, Xu Lizhen

The reliability demand of Log is higher than general
data, often doubled.

If the interval between two dumps is too long, lack of
storage space may occur because of the accumulation of
Log. Solutions:

1) Free the space after commit. It will be impossible to
recover from disk failure in this situation.

2) Periodically dump to tape.
3) Log compression:
 Don‘t have to store Log information for aborted

transactions
 B.I are no longer needed for committed transactions
 Changes can be consolidated, keep the newest A.I

only.

133Database Management Systems and Their Implementation, Xu Lizhen

6.4 Commit Rule and Log Ahead Rule

6.4.1 Commit Rule

A.I must be written to nonvolatile storage before
commit of the transaction.

6.4.2 Log Ahead Rule

If A.I is written to DB before commit then B.I must
first written to log.

6.4.3 Recovery strategies

(1)The features of undo and redo (are idempotent) :

undo(undo(undo ┅ undo(x) ┅)) = undo(x)

redo(redo(redo ┅ redo(x) ┅)) = redo(x)

134Database Management Systems and Their Implementation, Xu Lizhen

(2) Three kinds of update strategy

a) A.IDB before commit

TID active list

B.I Log (Log Ahead Rule)

A.I DB

┇

TID commit list

delete TID from active list
commit

135Database Management Systems and Their Implementation, Xu Lizhen

The recovery after failure in this situation

Check two lists for every TID while restarting
after failure:

Commit
list

Active
list

 undo, delete TID from
active list

  delete TID from active list

 nothing to do

136Database Management Systems and Their Implementation, Xu Lizhen

b) A.IDB after commit

TID active list

A.I Log (Commit Rule)

┇

TID commit list

A.I DB

delete TID from active list

commit

137Database Management Systems and Their Implementation, Xu Lizhen

The recovery after failure in this situation

Check two lists for every TID while restarting
after failure:

Commit
list

Active
list

 delete TID from active list

  redo, delete TID from
active list

 nothing to do

138Database Management Systems and Their Implementation, Xu Lizhen

c) A.IDB concurrently with commit

TID active list

A.I, B.I Log (Two Rules)

A.I DB (partially done)

┇

TID commit list

A.I DB (completed)

delete TID from active list
commit

139Database Management Systems and Their Implementation, Xu Lizhen

The recovery after failure in this situation

Check two lists for every TID while restarting
after failure:

Commit
list

Active
list

 undo, delete TID from
active list

  redo, delete TID from
active list

 nothing to do

140Database Management Systems and Their Implementation, Xu Lizhen

Conclusion :

redo undo

a) 

b) 

c)  

d)?

141Database Management Systems and Their Implementation, Xu Lizhen

6.5 Update Out of Place

 Keep two copies for every page of a relation

 Keep a page table (PT) for every relation

 When updating some page, produce a new
page out of place, change the corresponding
pointer in page table while the transaction
committing, let it point to new page.

new

PT┇

┇

old

Suppose relation R
has N pages, then the
length of its PT is N

142Database Management Systems and Their Implementation, Xu Lizhen

P141 : lorie’s approach

New

┇

┇

PTji

commit┅┅

Master Record (in memory)

PT1

Old

┇

┇

┇

┇

┇

┇

kth

PTj PTn

┅┅

Master Record (on disk)

143Database Management Systems and Their Implementation, Xu Lizhen

6.6 Recovery Procedures

Failure types :

1) Transaction failure: because of some reason beyond
expectation, the transaction has to be aborted.

2) System failure: the operating system collapse, but the
DB on disk is not damaged. Such as power cut
suddenly.

3) Media failure: disk failure, the DB on the disk is
damaged.

Solutions :

1) Transaction failure: because it must occur before
committing :

 Undo if necessary

 Delete TID from active list

144Database Management Systems and Their Implementation, Xu Lizhen

2) System failure:

 Restore the system

 Undo or redo if necessary

3) Media failure:

 Load the latest dump

 Redo according the log

145Database Management Systems and Their Implementation, Xu Lizhen

6.7 System Start Up

1) Emergency restart

Start after system or media failure. Recovery
is needed before start.

2) Warm start

Start after system shutdown. Recovery is not
required.

3) Cold start

Start the system from scratch. Start after a
catastrophic failure or start a new DB.

146Database Management Systems and Their Implementation, Xu Lizhen

6.8 Two Phase Commit

 The transactions in DDBMS are distributed transactions, the key
of distributed transaction management is how to assure all sub-
transactions either commit together or abort together.

 Realize the sub-transactions‘ harmony with each other relies on
communication, while the communication is not reliable.

 Two general paradox : No fixed length protocol exists.

 Solution : number the messages.

A BMarch i

OK i

March i+1

OK i+1

┇

If A has not received OK i+1
1) B had not received March i+1
2) OK i+1 has been lost

A send March i+1 again; for B :
1) If has received, send OK i+1 again

2) or, , send OK i+1

147Database Management Systems and Their Implementation, Xu Lizhen

 When there are multi generals, select one of them as
coordinator

coordinator

participantparticipant

148Database Management Systems and Their Implementation, Xu Lizhen

 Two Phase Commit
co

o
rd

in
at

o
r

p
ar

ti
ci

p
at

e

Broadcast prepare

OK / not OK

Commit/Abort

Ack

If the sub-transaction successes and
can commit, it answers OK, or not OK

If all of the sub-transactions are OK,
Commit command is sent out, or
Abort command is sent out

OK --- if success

Commit --- all OK Abort --- any one not OK

not OK --- if fail

 Every participant is self-determining before answering OK, it can
abort by itself. Once answers OK, it can only wait for the command
come from the coordinator.

 If the coordinator has failure after the participates answer OK, the
participates have to wait, and is in blocked state. This is the
disadvantage of 2PC.

I

II

149Database Management Systems and Their Implementation, Xu Lizhen

 Three Phase Commit

Broadcast prepare

Ready / Abort

Prepare to commit

OK

If the sub-transaction successes and can
commit, it answers Ready, or Abort

Broadcast to all participants and this
MSG is recorded on the disk

 If the coordinator has not any failure, phase II is wasted
 If the coordinator has failure after the participates answer OK, the

participates communicate each other and check the MSG recorded
on disk in phase II, and a new coordinator is elected. If the new
coordinator finds the Prepare to commit MSG on any participate, it
sends out Commit command, or sends out Abort command. So the
blocked problem can be solved in 3PC.

Ack

Commit/Abort

I

II

III

co
o

rd
in

at
o

r

p
ar

ti
ci

p
at

e

7. Concurrency Control

Database Management Systems and Their Implementation, Xu Lizhen

151Database Management Systems and Their Implementation, Xu Lizhen

7.1 Introduction

In multi users DBMS, permit multi
transaction access the database concurrently.

7.1.1 Why concurrency?

1) Improving system utilization & response time.

2) Different transaction may access to different
parts of database.

7.1.2 Problems arise from concurrent executions

152Database Management Systems and Their Implementation, Xu Lizhen

T1

Read(x)

x:=x+1

Write(x)

T2

Read(x)

x:=2*x

Write(x)t

Lost update

T1

Write(t)

(rollback)

T2

Read(t[x])

Read(t[y])

Dirty read

T1

Read(x)

Read(x)

T2

Write(x)

Unrepeatable read

So there maybe three kinds of conflict when transactions execute
concurrently. They are write – write, write – read, and read – write
conflicts. Write – write conflict must be avoided anytime. Write – read
and read – write conflicts should be avoided generally, but they are
endurable in some applications.

153Database Management Systems and Their Implementation, Xu Lizhen

7.1.3 Serialization --- the criterion for
concurrency consistency

Definition: suppose {T1,T2,…Tn} is a set of transactions
executing concurrently. If a schedule of {T1,T2,…Tn}
produces the same effect on database as some serial
execution of this set of transactions, then the schedule is
serializable.

Problem: different schedule → different equivalent
serial execution → different result? (yes, n!)

TA

Read R2

TB

Read R1

Write R2

TC

Write R1

The result of this schedule
is the same as serial
execution TA →TB →TC, so
it is serializable. The
equivalent serial execution
is TA→TB→TC .

154Database Management Systems and Their Implementation, Xu Lizhen

7.1.4 View equivalent and conflict equivalent

 Schedules --- sequences that indicate the
chronological order in which instructions of
concurrent transactions are executed

 a schedule for a set of transactions must
consist of all instructions of those
transactions

 must preserve the order in which the
instructions appear in each individual
transaction.

155Database Management Systems and Their Implementation, Xu Lizhen

Example Schedules

 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from
A to B. The following is a serial schedule, in which T1 is followed by T2.

T1 T2

read(A)
A := A – 50
write(A)
read(B)
B := B + 50
write(B)

read(A)
temp := A*0.1;
A := A – temp
write(A)
read(B)
B := B + temp
write(B)t

156Database Management Systems and Their Implementation, Xu Lizhen

Example Schedules

 Let T1 and T2 be the transactions defined previously. The
following schedule is not a serial schedule, but it is equivalent
to the above.

T1 T2

read(A)
A := A – 50
write(A)

read (A)
temp := A*0.1
A = A – temp
write(A)

read(B)
B := B + 50
write(B)

read(B)
B := B + temp
write(B)t

157Database Management Systems and Their Implementation, Xu Lizhen

View equivalent and Conflict equivalent

 Let S and S’ be two schedules with the same set of
transactions. S and S’ are view equivalent if they
produce the same effect on database based on the
same initial execution condition.

 Conflict operations : R-W、W-W. The sequence of
conflict operation will affect the effect of execution.

 Non-conflicting operations: ① R-R ② Even if there
are write operation, the data items operated are
different. Such as Ri(x) and Wj(y).

 If a schedule S can be transformed into a schedule S’
by a series of swaps of non-conflicting operations, we
say that S and S’ are conflict equivalent.

158Database Management Systems and Their Implementation, Xu Lizhen

 Property: if schedule S and S’ are conflict equivalent, they
must be view equivalent. It is not right contrarily.

 Serialization can be divided into view serialization and
conflict serialization.

 Example 1: for the schedule s of transaction set {T1,T2,T3}

s = R2(x)W3(x)R1(y)W2(y) → R1(y)R2(x)W2(y)W3(x) = s‘

s is conflict serialization because s‘ is a serial execution.

 Example 2: s = R1(x)W2(x)W1(x)W3(x)

There is no conflict equivalent schedule of s, but we can find a
schedule s‘

s‘ = R1(x)W1(x)W2(x)W3(x)

It is view equivalent with s, and s‘ is a serial execution, so s is
view serialization.

159Database Management Systems and Their Implementation, Xu Lizhen

 The test algorithm of view equivalent is a NP
problem, while conflict serialization covers
the most instances of serializable schedule, so
the serialization we say in later parts will
point to conflict serialization if without
special indication.

160Database Management Systems and Their Implementation, Xu Lizhen

7.1.5 Preceding graph

Directed graph G = <V,E>

V --- set of vertexes, including all transactions
participating in schedule.

E --- set of edges, decided through the analysis of
conflict operations. If any of the following conditions
is fulfilled, add an edge Ti→Tj into E:

 Ri(x) precedes Wj(x)

 Wi(x) precedes Rj(x)

 Wi(x) precedes Wj(x)

Finally, check if there is cycle in the preceding graph.
If there is cycle in it, the schedule is not serializable,
or it is serializable.

161Database Management Systems and Their Implementation, Xu Lizhen

Find equivalent serial execution while serialization

1) Because there is no cycle, there must be some
vertexes whose in-degree is 0. Remove these vertexes
and relative edges from the preceding graph, and
store these vertexes into a queue.

2) Process the left graph in the same way as above, but
the vertexes removed should be stored behind the
existing vertexes in the queue.

3) Repeat 1 and 2 until all vertexes moved into the
queue.

Example: for schedule s on {T1,T2,T3,T4}, suppose :

s = W3(y)R1(x)R2(y)W3(x)W2(x)W3(z)R4(z)W4(x)

Is it serializable? Find out the equivalent serial
execution if it is.

162Database Management Systems and Their Implementation, Xu Lizhen

s = W3(y)R1(x)R2(y)W3(x)W2(x)W3(z)R4(z)W4(x)

The commission of concurrency control is to enforce the
concurrent transactions executed in a serializable
schedule.

T1

T2

T3

T4

T2

T3

T4

Queue : T1

T2

T4

Queue : T1,T3

T4

Queue : T1,T3,T2
Equivalent serial execution :
T1→T3→T2→T4

Empty

163Database Management Systems and Their Implementation, Xu Lizhen

7.2 Locking Protocol

Locking method is the most basic concurrency control
method. There maybe many kinds of locking protocols.

7.2.1 X locks

Only one type of lock, for both read and write.

Compatibility matrix : NL --- no lock X --- X lock

Y --- compatible N --- incompatible

NL X

NL Y Y

X Y N

X_lock R
Update R
┇
X_unlock R
EOT

TA
X_lock R
wait

X_lock R
Read R
┇

TB

164Database Management Systems and Their Implementation, Xu Lizhen

*Two Phase Locking

 Definiton1: In a transaction, if all locks precede all
unlocks, then the transaction is called two phase
transaction. This restriction is called two phase
locking protocol.

 Definition2: In a transaction, if it first acquires a lock
on the object before operating on it, it is called well-
formed. T1

Lock A
Lock B
Lock C
┇
Unlock A
Unlock B
Unlock C

T2
Lock A
Lock B
Unlock A
Unlock B
Lock C
┇
Unlock C

2PL not 2PL

Growing
phase

Shrinking
phase

 Theorem: If S is any
schedule of well-
formed and two
phase transactions,
then S is serializable.

(proving is on p151)

165Database Management Systems and Their Implementation, Xu Lizhen

Conclusions :

1) Well-formed + 2PL : serializable

2) Well-formed + 2PL + unlock update at EOT:
serializable and recoverable. (without domino
phenomena)

3) Well-formed + 2PL + holding all locks to EOT: strict
two phase locking transaction.

7.2.2 (S,X) locks

S lock --- if read access is
intended.

X lock --- if update access
is intended.

NL S X

NL Y Y Y

S Y Y N

X Y N N

166Database Management Systems and Their Implementation, Xu Lizhen

7.2.3 (S,U,X) locks

U lock --- update lock. For
an update access the
transaction first acquires
a U-lock and then
promote it to X-lock.

Purpose: shorten the time
of exclusion, so as to
boost concurrency degree,
and reduce deadlock.

NL S U X

NL Y Y Y Y

S Y Y Y N

U Y Y N N

X Y N N N

X (S,X) (S,U,X)

Concurrency degree

Overhead

167Database Management Systems and Their Implementation, Xu Lizhen

7.3 Deadlock & Live Lock

Dead lock: wait in cycle, no transaction can obtain all of resources
needed to complete.

Live lock: although other transactions release their resource in
limited time, some transaction can not get the resources needed for
a very long time.

X_lock R1

┇
X_lock R2
wait

TA
X_lock R2
┇
X_lock R1
wait

TB R
T1: S-lock
T2: S-lock
┇

T: x-lock

 Live lock is simpler, only need to adjust schedule strategy, such
as FIFO

 Deadlock: (1) Prevention(don‘t let it occur); (2) Solving(permit it
occurs, but can solve it)

168Database Management Systems and Their Implementation, Xu Lizhen

7.3.1 Deadlock Detection

1) Timeout: If a transaction waits for some specified
time then deadlock is assumed and the transaction
should be aborted.

2) Detect deadlock by wait-for graph G=<V,E>

V : set of transactions {Ti|Ti is a transaction in DBS
(i=1,2,…n)}

E : {<Ti, Tj>|Ti waits for Tj (i ≠ j)}

 If there is cycle in the graph, the deadlock occurs.

 When to detect?

1) whenever one transaction waits.

2) periodically

169Database Management Systems and Their Implementation, Xu Lizhen

 What to do when detected?

1) Pick a victim (youngest, minimum abort cost, …)

2) Abort the victim and release its locks and resources

3) Grant a waiter

4) Restart the victim (automatically or manually)

7.3.2 Deadlock avoidance

1) Requesting all locks at initial time of transaction.

2) Requesting locks in a specified order of resource.

3) Abort once conflicted.

4) Transaction Retry

170Database Management Systems and Their Implementation, Xu Lizhen

Every transaction is uniquely time stamped. If TA

requires a lock on a data object that is already locked by
TB, one of the following methods is used:

a) Wait-die: TA waits if it is older than TB, otherwise it
―dies‖, i.e. it is aborted and automatically retried
with original timestamp.

b) Wound-wait: TA waits if it is younger than TB,
otherwise it ―wound‖ TB, i.e. TB is aborted and
automatically retried with original timestamp.

In above, both have only one direction wait, either
older → younger or younger → older. It is impossible
to occur wait in cycle, so the dead lock is avoided.

171Database Management Systems and Their Implementation, Xu Lizhen

7.4 Lock Granularities

7.4.1 Locking in multi granularities

To reduce the overhead of locking, the lock unit should be the
bigger, the better; To boost the concurrency degree of
transactions, the lock unit should be the smaller, the better.

In large scale DBMS, the lock unit is divided into several levels:

DB－File－Record－Field

In this situation, if a transaction acquires a lock on a data object
of some level then it acquires implicitly the same lock on each
descendant of that data object.

So, there are two kinds of locks in multi granularity lock method:

 Explicit lock

 Implicit lock

172Database Management Systems and Their Implementation, Xu Lizhen

7.4.2 Intention lock

 How to check conflicts on implicit locks？

 Intention lock: provide three kinds of intension locks
which are IS, IX and SIX. For example, if a transaction
adds a S lock on some lower level data object, all the
higher level data object which contains it should be
added an IS lock as a warning information. If another
transaction want to apply an X lock on a higher level
data object later, it can find the implicit conflict
through IS lock.

 IS --- Intention share lock
 IX --- Intention exclusive lock
 SIX --- S＋IX

DB

File

Record

Field

S

IS

IS

173Database Management Systems and Their Implementation, Xu Lizhen

Compatibility matrix while lock in multi granularities :

NL IS IX S SIX X

NL Y Y Y Y Y Y

IS Y Y Y Y Y N

IX Y Y Y N N N

S Y Y N Y N N

SIX Y Y N N N N

X Y N N N N N

The lock with strong exclusion degree can substitute
the lock with weak exclusion degree while locking, but
it is not right contrarily.

X

SIX

IXS

IS

NL

strong

weak

E
x
clu

sio
n

 d
e
g

re
e

174Database Management Systems and Their Implementation, Xu Lizhen

Locking Rules:

 Locks are requested from root to leaves and released
from leaves to root.

record file DB

(1) S IS IS

(2) X IX IX

(3) All read and some write SIX IX, IS

Locking order

Request X lock to records need updating Substitute with stronger exclusive lock

DB

File

Record

Field

 Example:

175Database Management Systems and Their Implementation, Xu Lizhen

7.5 Locking on Index (B+ Tree)

 Transactions access concurrently not only the data in DB,
but also the indexes on these data, and apply operations
on indexes, such as search, insert, delete, etc. So indexes
also need concurrency control while multi granularity
locking is supported.

 How can we efficiently lock a particular leaf node?
 Btw, don‘t confuse this with multiple granularity locking!

 One solution: Ignore the tree structure, just lock pages
while traversing the tree, following 2PL.

 This has terrible performance!
 Root node (and many higher level nodes) become bottlenecks

because every tree access begins at the root.

176Database Management Systems and Their Implementation, Xu Lizhen

Some Useful Observations

 Every access to B+ tree need a traverse from root to
some leaf. Only leaves have detail information about
data, such as TID, while higher levels of the tree only
direct searches for leaf pages.

 One node occupies one page generally, so the lock
unit of B+ tree is page. Don‘t need multi granularity
locks, only S, X lock on page level are enough.

 B+ tree is key resource accessed frequently, liable to
be the bottleneck of system. Performance is very
important in index concurrency control.

 If occur conflict while traverse the tree, discard all
locks applied, and search from root again after some
delay. Avoid deadlock resulted by wait.

177Database Management Systems and Their Implementation, Xu Lizhen

Some Useful Observations

 Originally, locks on index are only used to keep the
consistency of index itself. The correctness of
concurrent transactions is responsible by 2PL. From
this sense, the locks on index don‘t need keeping to
EOT, they can release immediately after finish the
mapping from attribute value to tuples‘ addresses.
But in 7.6 we will know, even the strict 2PL has leak
while multi granularity locks are permitted. The lock
on leaf of B+ tree should be kept to EOT in order to
make up the leak of strict 2PL in this situation, while
locks on other nodes of the tree can be released after
finishing of search.

178Database Management Systems and Their Implementation, Xu Lizhen

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Traversing
the tree

179Database Management Systems and Their Implementation, Xu Lizhen

Tree Locking Algorithm

1. While traversing, apply S lock on root first, then apply S lock on
the child node selected. Once get S lock on the child, the S lock
on parent can be released, because traversing can‘t go back.
Search like this until arrive leaf node. After traversing, only S
lock on wanted leaf is left. Keep this S lock till EOT.

2. While inserting new index item, traverse first, find the leaf node
where the new item should be inserted in. Apply X lock on this
leaf node.

 If it is not full, insert directly.

 If it is full, split node according to the rule of B+ tree. While
splitting, besides the original leaf, the new leaf and their parent
should add X lock. If parent is also full, the splitting will continue.

 In every splitting, must apply X lock on each node to be changed.
These X locks can be released when the changes are finished.

 After the all inserting process is completed, the X lock on leaf node
is changed to S lock and kept to EOT.

180Database Management Systems and Their Implementation, Xu Lizhen

Tree Locking Algorithm

3. While deleting an index item from the tree, the
procedure is similar as inserting. Deleting may cause
the combination of nodes in B+ tree. The node
changed must be X locked first and X lock released
after finishing change. The X lock on leaf node is also
changed to S lock and kept to EOT.

181Database Management Systems and Their Implementation, Xu Lizhen

7.6 Phantom and Its Prevention

 The assumption that the DB is a fixed
collection of objects is not true when multi
granularity locking is permitted. Then even
Strict 2PL will not assure serializability:

 T1 locks all pages containing sailor records with
rating = 1, and finds oldest sailor (say, age = 71).

 Next, T2 inserts a new sailor; rating = 1, age = 96.

 T2 also deletes oldest sailor with rating = 2 (and,
say, age = 80), and commits.

 T1 now locks all pages containing sailor records
with rating = 2, and finds oldest (say, age = 63).

 No consistent DB state where T1 is ―correct‖!

182Database Management Systems and Their Implementation, Xu Lizhen

The Problem

 T1 implicitly assumes that it has locked the set of all
sailor records with rating = 1.
 Assumption only holds if no sailor records are added while

T1 is executing!

 Need some mechanism to enforce this assumption. (Index
locking and predicate locking)

 Example shows that conflict serializability guarantees
serializability only if the set of objects is fixed!

 If the system don‘t support multi granularity locking,
or even if support multi granularity locking, the
query need to scan the whole table and add S lock on
the table, then there is not this problem. For example :

select s#, average(grade) from SC group by s#;

183Database Management Systems and Their Implementation, Xu Lizhen

Index Locking

 If there is a dense index on the rating field, T1
should lock the index node containing the data
entries with rating = 1 and keep it until EOT.
 If there are no records with rating = 1, T1 must lock the

index node where such a data entry would be, if it existed!

 When T2 wants to insert a new sailor (rating = 1,
age = 96), he can‘t get the X lock on the index node
containing the data entries with rating = 1, so he
can‘t insert the new index item to realize the insert
of a new sailor.

 If there is no suitable index, T1 must lock the
whole table, no new records can be added before
T1 commit of course.

r=1

Data

Index

184Database Management Systems and Their Implementation, Xu Lizhen

Predicate Locking

 Grant lock on all records that satisfy some
logical predicate, e.g. age > 2*salary.

 Index locking is a special case of predicate
locking for which an index supports efficient
implementation of the predicate lock.

 What is the predicate in the sailor example?

 In general, predicate locking has a lot of
locking overhead. It is almost impossible to
realize it.

185Database Management Systems and Their Implementation, Xu Lizhen

7.7 Isolation Level of Transaction

 Support for isolation level of transaction is added
from SQL-92. Each transaction has an access mode, a
diagnostics size, and an isolation level.

 SET TRANSACTION statement

Isolation
Level

Possible result

Lock demandDirty
Read

Unrepeatable
Read

Phantom
Problem

Read
Uncommitted

Maybe Maybe Maybe
No lock when read; X lock when write,
keep until EOT

Read
Committed

No Maybe Maybe
S lock when read, release after read; X
lock when write, keep until EOT

Repeatable
Reads

No No Maybe
According to Strict 2PL

Serializable No No No
Strict 2PL and keep S lock on leaf of
index until EOT

186Database Management Systems and Their Implementation, Xu Lizhen

Example :

SET TRANSACTION READ ONLY

ISOLATION LEVEL REPEATABLE READ;

SET TRANSACTION ISOLATION LEVEL

{ READ COMMITTED |

READ UNCOMMITTED |

REPEATABLE READ |

SERIALIZABLE

}

187Database Management Systems and Their Implementation, Xu Lizhen

7.8 Lock Mechanism in OODBMS

1) Lock granularity: object is the smallest lock granularity in
OODB generally. DB－Class－Object

2) Single level locking: lock the object operated with S or X lock
directly. Suitable for the OODBMS faced to CAD application, etc.
not suitable for the application occasion in which association
queries are often.

3) multi granularity lock: use S, X, IS, IX, SIX locks introduced in
last section. It is a typical application of multi granularity lock.

But in this situation, the class level lock can only lock the objects
directly belong to this class, can not include the objects in its
child classes. So it is not suitable for cascade queries on
inheriting tree or schema update.

4) Complex multi granularity lock: two class hierarchy locks are
added.

188Database Management Systems and Their Implementation, Xu Lizhen

 RL --- add a S lock at a class and all of its child classes

 WL --- add a X lock at a class and all of its child classes

NL IS IX S SIX X RL WL

NL Y Y Y Y Y Y Y N

IS Y Y Y Y Y N Y N

IX Y Y Y N N N N N

S Y Y N Y N N Y N

SIX Y Y N N N N N N

X Y N N N N N N N

RL Y Y N Y N N Y N

WL Y N N N N N N N

189Database Management Systems and Their Implementation, Xu Lizhen

Locking steps of RL(WL) locks:

a) Add IS(IX) lock on any super
class chain of this class and DB

b) Add RL(WL) on this class

c) Check top-down if there is lock
conflicting with RL(WL) on the
child classes of this class. If there
is no conflict, add a RL(WL) lock
on the child class who has multi
parents met first.

d) If find any conflict in above, the
lock application fail.

A

B C

D E F G

I

K

H

J

RL

IS

IS

RL

WL

IX

IX



WL



5) Locking complex object: lock referred
object only when accessed.(according to
general multi granularity lock protocol)

190Database Management Systems and Their Implementation, Xu Lizhen

7.9 The Time Stamp Method

1. T.S --- A number generated by computer‘s internal
clock in chronological order.

2. T.S for a transaction --- the current T.S when the
transaction initials.

3. T.S for an data object:

1) Read time (tr) --- highest T.S possessed by any
transaction to have read the object.

2) Write time (tw) --- highest T.S possessed by any
transaction to have written the object.

4. The key idea of T.S method is that the system will
enforce the concurrent transactions to execute in the
schedule equivalent with the serial execution
according to T.S order.

191Database Management Systems and Their Implementation, Xu Lizhen

Read/Write operations under T.S method

5. Let R --- a data object with T.S tr and tw.

T --- a transaction with T.S t.

Transaction T reads R:

read R

if (t >= tw)

then /* OK */

tr = Max (tr, t)

else /* a transaction younger than T has already write R
ahead of T, conflict */

restart T with a new T.S

192Database Management Systems and Their Implementation, Xu Lizhen

Transaction T writes R:

if (t >= tr)

then if (t >= tw)

then /* OK */

write R

tw = t

else /* tr <= t < tw */

do nothing

else /* a transaction younger than T has already
read R ahead of T, conflict */

restart T with a new T.S

tr t tw

No other reads

193Database Management Systems and Their Implementation, Xu Lizhen

Remarks:

1. Compared with lock method, the most obvious advantage is
that there is no dead lock, because of no wait.

2. Disadvantage: every transaction and every data object has T.S,
and every operation need to update tr or tw, so the overhead of
the system is high.

3. Solution:

 Enlarge the granularity of data object added T.S. (Low
concurrency degree)

 T.S of data object are not actually stored in nonvolatile storage
but in main memory and preserved for a specified time and the
T.S of data objects whose T.S is not in main memory are
assumed to be zero.

194Database Management Systems and Their Implementation, Xu Lizhen

7.10 Optimistic Concurrency Control Method

The key idea of optimistic method is that it supposes
there is rare conflict when concurrent transactions
execute. It doesn't take any check while transactions are
executing. The updates are not written into DB directly
but stored in main memory, and check if the schedule of
the transaction is serializable when a transaction
finishes. If it is serializable, write the updating copies in
main memory into DB; Otherwise, abort the transaction
and try again.

The lock method and time stamp method introduced
above are called ―pessimistic method‖.

195Database Management Systems and Their Implementation, Xu Lizhen

Three phases of transaction execution:

1. Read phase: read data from database and
execute every kind of processing, but update
operations only form update copies in
memory.

2. Validate phase: check if the schedule of the
transaction is serializable.

3. Write phase: if pass the check successfully,
write the update copies in memory into DB
and commit the transaction; Or throw away
the update copies in memory and abort the
transaction.

196Database Management Systems and Their Implementation, Xu Lizhen

Information must be reserved:

1. Read set of each transaction

2. Write set of each transaction

3. The start and end time of each phase of each
transaction

197Database Management Systems and Their Implementation, Xu Lizhen

Checking method while transaction ends:

When transaction Ti ends, only need to check if there is conflict
among Ti and the transactions which have committed and other
transactions which are also in checking phase. The transactions
which are in read phase don't need to be considered.

Suppose Tj is any transaction which has committed or is being
checked, Ti passes the check if it fulfills one of the following
conditions for all Tj :

1. Tj had finished write phase when Ti began read phase, Tj → Ti

2. The intersection of Ti's read set and Tj's write set is empty, and Ti

began write phase after Tj finifhed write phase.

3. Both Ti's read set and write set don't intersect with Tj's write set.

4. There is not any access conflict between Ti and Tj.

198Database Management Systems and Their Implementation, Xu Lizhen

7.11 Locking in DDBMS

The concurrency control in DDBMS is the same as
that in centralized DBMS, demand concurrent
transactions to be scheduled serializably. The
problems in DDBMS are:

 Multi_copy

 Communication overhead

7.11.1 write lock all, read lock one

 Read R --- S_lock on any copy of R

 Write R---X_lock all copies of R

 Hold the locks to EOT

Communication overhead: suppose n---No. of copies

199Database Management Systems and Their Implementation, Xu Lizhen

7.11.2 Majority locking

 Read R ---S_lock on a majority of copies of R

 Write R---X_lock on a majority of copies of R

 Hold the locks to EOT

Communication overhead : Majority ---
(n+1)/2

Can be
merged

Write: n lock MSG
n lock grants
n update MSG
n ACK
[n unlock MSG]

Read: 1 lock MSG
1 lock grants
1 read MSG

4n

2

200Database Management Systems and Their Implementation, Xu Lizhen

 In 7.11.1, if there are two transaction compete the X
lock for update, maybe each get a part , but no one
can X-lock all. The deadlock will occur very easily. In
majority locking method, this kind of dead lock is
impossible to occur as long as n is an odd.

Read: (n+1)/2 lock MSG
(n+1)/2 lock grants
1 read MSG

n+1
3n+1

Write: (n+1)/2 lock MSG
(n+1)/2 lock grants
n update MSG
n ACK

201Database Management Systems and Their Implementation, Xu Lizhen

7.11.3 k-out-of-n locking

 Write R---X_lock on k copies of R, k>n/2

 Read R ---S_lock on n-k+1 copies of R

 Hold the locks to EOT

 For read-write conflict: k+(n-k+1)=n+1>n, so the
conflict can be found on at least one copy.

 For write-write conflict: 2k>n, so it is also sure that
the conflict can be detected.

The above two methods are the special situations of it:

 7.11.1 is k=n; 7.11.2 is k=(n+1)/2

 k can be changed between (n+1)/2 ~ n, the bigger of
k, the better for read operations.

202Database Management Systems and Their Implementation, Xu Lizhen

7.11.4 Primary Copy Method

R---data object

Assign the lock responsibility for locking R to a
given site. This site is called primary site of R.

Communication overhead :
Read: 1 lock MSG

1 lock grants
1 read MSG

2
2n+1

Write: 1 lock MSG
1 lock grants
n update MSG
n ACK

It is efficient but liable to fail, so there are many
variations. It is often used together with primary copy
updating strategy (see 5.9).

203Database Management Systems and Their Implementation, Xu Lizhen

T1A T2A

T1B T2B

Site A

Site B

7.11.5 Global Deadlock

The above shows a global dead lock. How to find out
this kind of dead lock?

Global wait-for graph: add EXT nodes based on general
wait-for graph. If transaction T is a distributed
transaction, and has sub transactions on other sites, and
T is the head of wait-for chain of current site, add
EXT→T into the graph; if T is the tail of wait-for chain of
current site, add T→EXT into the graph.

Wait for lock

Wait for lock

Wait T1A finish Wait T2B finish

• Suppose both T1 and T2 are distributed
transactions, and have two sub
transactions on site A and B respectively.

• T1A and T1B must commit simultaneously
• T2A and T2B must commit simultaneously

204Database Management Systems and Their Implementation, Xu Lizhen

Processing method of global wait-for graph:

If on some site has: EXT→Ti→Tj→ ┅ →Tk→EXT

1) Check other sites if has: EXT→Tk→Tl→ ┅ →Tx→EXT

2) if Tx=Ti : global deadlock is detected.

if Tx≠Ti : merge two wait-for graphs:

EXT→Ti→Tj→ ┅ →Tk →Tl→ ┅ →Tx→EXT

3) Repeat step 1 and 2, check if Tx will result in global
dead lock like Tk when the condition in 2 is true. If
wait-for graph on all sites have been check like above
and no global cycle is found, no global dead lock
occur.

205Database Management Systems and Their Implementation, Xu Lizhen

7.12 Time Stamp Technique in DDBMS

7.12.1 global time stamp

 To keep the uniqueness of transaction time
stamp in the whole distributed system, define
a global time stamp:

Global T.S = Local T.S + Site ID

 The clock on different site maybe different. It
is not important. The key is to assure :

time of receipt >= time of delivery

 Solution: t at receipt site := max(t1, t2)

t1---current T.S at receipt site

t2---T.S of MSG

206Database Management Systems and Their Implementation, Xu Lizhen

7.12.2 Read and write operations

1) Write---update tw of all copies.

2) Read ---update tr of the copy read.

3) When writing we check T.S of all copies. If
t<tr or t<tw for any copy the transaction
should be aborted. When reading we check
T.S of the copy read. If t<tw the transaction
should be aborted.

