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Abstract—Team formation is an effective collaboration manner
in social networks (SNs). Within teams, social individuals can
work together to accomplish complex jobs that they are unable
to perform individually. Due to its wide range of applications,
team formation in SNs has been studied extensively and a
number of approaches have been proposed. However, all of
these proposals either build teams of individuals to accomplish
jobs through a centralized manner or ignore the selfish nature
of social individuals, or both. In this paper, we introduce a
decentralized negotiation-based team formation model for non-
cooperative SNs, where social individuals are self-interested.
The proposed team formation model works by allowing the
employer (i.e., job initiator) to recruit a team of professional
employees that demand small working remuneration and incur
little communication overhead and allowing the employees to
join the beneficial teams from which they can achieve a high
financial remuneration. The simulation results show that our
model achieves about 80% social welfare of the ideal centralized
models on average. Moreover, compared to other conventional
distributed models, our model can reduce team formation time
significantly, making our model a better choice for the real-world
time-sensitive applications.

Index Terms—team formation; social networks; multiagent
systems; negotiation

I. INTRODUCTION

As the increasing development of Internet technology,

many online social networks (SNs) such as Facebook

(www.facebook.com) and LinkedIn (www.linkedin.com) have

become a flexible platform for supporting some business

activities such as crowdsourcing [1]. In this paper, we study

a special crowdsourcing paradigm, where enterprises (organi-

zations or individuals) post their jobs (e.g., software product

development, website maintenance and advertisement design)

through these online social network platforms and wish to

recruit a set of social individuals to work as a team for

performing their jobs. This kind of business activity can also

be called team formation in social networks [2-7].

As an example of this social team formation problem, con-

sider an IT manager that wants to develop a software product.

Due to the limited energy and skills to accomplish this job

individually, he needs to recruit a team of software engineers

to perform this job. To complete this job successfully, these

recruited employees should be professional enough such that

they satisfy all of the skill requirements of this job. Moreover,

because of the limited budget on hiring workers, the manager

wishes to hire the engineers i) that demand little working

cost for their services (the recruited engineers need to be

paid for their work) and ii) that incur little communication

cost (engineers might be located in different cities, which will

incur certain transportation fees when face to face meetings

are necessary to improve this job’s quality).

Online social networks provide good opportunities for this

manager to build a team of experts, because he is connected

with a large number of social individuals and can learn about

their information (e.g., working cost and location) through

online interaction easily. However, social networks are highly

dynamic and heterogeneous (e.g., individuals own diverse

skills with varying working costs and live in different cities

with varying communication costs), it also present challenges

for the job managers to decide which individuals to recruit

and which skills of which individuals to use such that the

minimum budget spent and for the individuals to decide which

job to perform such that the maximum financial remuneration

achieved.

Due to its wide range of applications, this social team

formation problem recently has attracted great interest and a

number of proposals have been presented [2-7] (see Section

2 for more details). For all of these researches, however,

there are a couple of issues that we feel impractical. First,

they all assume that there exists an omnipotent controller that

maintains information on all of the social individuals in SNs

and can directly communicate with them to form teams in

a centralized manner. However, most existing online social

networks do not involve such a controller and in reality,

both the managers recruit employees for their jobs and the

employees join teams to perform jobs are in a self-organized

manner [8-10]. Second, they all hold the assumption that social

individuals are cooperative, i.e., each individual is willing to

join the specific team enforced by the controller to satisfy the

global optimization objective. While in practice, individuals

are always self-interested and their only incentive to join a

team is to maximize their own benefits [11][12].

To address the above two issues, in this paper, we first model

each individual in a SN as a rational and autonomous agent and

then propose a distributed multiagent-based negotiation model

for the agents to build or join teams. The proposed negotiation

model extends the contract net protocol [8] by allowing the

manager and contractor agents to negotiate with each other on

skill contribution autonomously. This negotiation mechanism

mainly consists of the following three phases: i) offer: the
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manager interacts with a contractor and sends an offer to the

contractor on skill contribution; ii) Response: the contractor

responds to the manager (i.e., accept or reject this offer) with

the aim of optimizing its own financial remuneration and

iii) Confirm: the manager confirm a final agreement on skill

contribution with the contractor. It should be noted that the

main contribution of this paper is the decision-making strategy

devised for the agents to build or join teams, rather than this

negotiation mechanism used only for realizing team formation.

Although the complex bilateral bargaining-based negoti-

ation mechanism [9][10] might also be available, they are

inefficient for this social team formation problem. First, a

key assumption in [9][10] is that agents have incomplete

information on other agents’ working costs and their mech-

anism can address the incompleteness effectively by allowing

agents to negotiate with one another round and round until

they reach an agreement on working cost. This mechanism,

however, turns out to be redundant and time consuming for

social team formation problem, where individual’s working

cost is public and the manager can learn this information easily

by browsing the individual’s online profile [1]. Second, social

team formation should also consider the synergy satisfaction

among team members, that is, the team members should form

a connected subgraph of the constraining networks [2][4] and

due to the arbitrary negotiation among agents in [9][10], they

do not satisfy this objective. Instead, in this paper, based on the

reasonable assumption that agents have complete information

of others and by being aware of the synergy effect, we propose

a practical social team formation model, which is proved to be

more efficient than the traditional models [9][10] in reducing

team formation time.

We also conduct a set of experiments to evaluate the

effectiveness of our model. The experimental results show that

compared to the related studies with centralized controller [2-

7], our model achieves 80% social welfare of them on average

and compared to the related studies with the complex bilateral

bargaining protocols [9][10], our model reduces the team

formation time significantly while maintaining a desirable

performance on team utility, making our model a better option

for real-world time-sensitive applications.

II. RELATED WORK

Team Formation in Social Networks. The problem of

team formation in social networks was first studied by Lappas

et al. in [2]. They model each social network as a weight-

ed and undirected graph G=<V,E,W>, where vertices V
represent individuals, edges E represent social connections

among individuals and the weights W on the edges represent

the communication cost among connected individuals. Given

a social network graph G and a job J , Lappas et al. [2]

target to find a team of individuals V ∗∈V such that V ∗ not

only meet all of the skill requirements of J but also incur

the least team communication cost. Following [2] are several

social team formation variants with different objectives, such

as synergy maximization [3][4], budget minimization [5] and

load balancing [6][7]. Noting that all of these variants are

NP-hard, the previous researches [2-7] focus on developing

centralized approximation with rigorous quality guarantees.

This centralization, however, is impractical for real-world ap-

plications because many online social networks do not involve

such an omnipotent central authority and social individuals are

self-organized to build or join teams.

Team Formation in Networked Multiagent Systems. In

networked multiagent systems, agents need interacting with

their neighbors to form teams for accomplishing tasks. Notic-

ing that the underlying network topology has a dramatic effect

on the quality of the formed teams, Gaston and desJardins [13]

and Kota et al. [14] develop a dynamic structural adaption

method to improve system performance, where agents can

adjust network structure by deleting their costly connections

and rewiring to these agents with better connections. Following

[13], Glinton et al. [15] investigate the network topologies

that result from the structural adaption method and they find

that scale-free networks are consistently formed. All of these

proposals [13-15] struggle to optimize system performance by

adapting network structure, while we are interested in finding

a team of individuals to perform a specific job from a static

network. An et al. [9] and Ye et al. [10] have made great effort

on distributed team formation in static networks, where agents

are assumed to have incomplete working cost information of

others. Their proposed bilateral bargaining-based negotiation

mechanism is efficient in addressing the incompleteness by al-

lowing the agents to negotiate with each other round and round

until they reach an agreement on working cost. However, this

mechanism turns out to be redundant and inefficient for the

social team formation problem, where individuals are willing

to let others know their working cost and from an individual’s

perspective, letting others know his true information may help

him get a desirable occupation [1]. Moreover, their mechanism

might form a unconnected team, dissatisfying the synergy

objective in social team formation issue [4].

III. PROBLEM DESCRIPTION

In this section, we provide notations necessary for under-

standing the problem of team formation in social networks.

Social Networks. Each social network SN=<A,E,D> is

an undirected graph, where A={a1, a2, ..., am} is the set of

agents (hereafter, we use the terms ”agent” and ”individual”

interchangeably). ∀(ai, aj)∈E indicates the existence of a

direct social interaction between ai and aj . Each pair of agents

ai and aj is associated with a value d(ai, aj)∈D indicates the

cost (e.g., transportation fee) incurred by the necessary com-

munication between ai and aj and d(ai, aj)=d(aj , ai). More-

over, we assume that there are l type skills S= {s1, s2, ..., sl}
available in a SN.

Agents. Each agent ai∈A is defined by a 3-tuple <
F (ai),Wc(ai), Nei(ai)>, where F (ai)∈S indicates the set

of skills that agent ai owns and if sj∈F (ai), ai has the

skill sj . Wc(ai)={Wc(ai, s1), ...,Wc(ai, s|F (ai)|)} indicates

ai’s working cost of providing each owned skill sj∈F (ai).
And Nei(ai) indicates the social neighbors of ai, i.e.,

Nei(ai)={aj |(ai, aj)∈E}. Furthermore, we postulate that
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each agent cannot join more than one team at a time, while as a

member of a team it can contribute more than one skill to this

team job. This assumption is reasonable since each individual

has limited energy and participating in multiple teams will

degrade the performance of each team that it joins [13].
Jobs. We consider a set of jobs K={κ1, κ2, ..., κn} initiated

by these agents A independently, in this paper, at each time

step, jobs are initiated by agents independently with a specific

probability. Then, each job κ∈K can be defined by a tuple <
Iaκ, Rκ, Itκ, Dlκ,Wtκ, vκ(t)>, where Iaκ: κ→ A indicates

the initiator agent at which job κ is initiated. Rκ is the set of

skills required by job κ and if sj∈Rκ, job κ requires the skill

sj . Itκ is the initialization time of κ, i.e., at time Itκ, agent

Iaκ posts κ. Dlκ is the deadline (the latest execution start

time) of κ. Wtκ indicates the working time it will take to finish

κ after execution starts (note that job κ must finish before

Dlκ+Wtκ). Finally, vκ(t) represents the value associated with

the job κ, which is a function of finish time t. Here, referring

to the related definition in [9], we define the value function

as:

vκ(t) =

{
vκ(

Dlκ+Wtκ−t
Dlκ−Itκ

)δ t ≤ Dlκ +Wtκ;

0 t > Dlκ +Wtκ.
(1)

vκ is the predetermined value of κ, set by its initiator Iaκ
at job κ’s initialization time Itκ; δ (0≤δ≤1) is the parameter

modeling how job value decreases with the increase of finish

time t. If job κ starts execution before the deadline Dlκ, vκ(·)
has the maximum value at time Itκ+Wtκ and the minimum

value at time Dlκ+Wtκ.
Teams. Each team Tκ is responsible for a job κ, which

is denoted by a 3-tuple <Ωκ, Cont(Ωκ, κ), usκ>, where

Ωκ is the set of agents that have joined the team Tκ.

Cont(Ωκ, κ)={(ai, sj), ..., (ap, sq)} is the skill contribution

function that associates with each teammate ai∈Ωκ a required

skill sj∈Rκ and ∀(ai, sj)∈Cont(Ωκ, κ) indicates teammate

ai contributes skill sj to job κ. usκ represents the skills of

job κ that have not been satisfied by the current teammates

Ωκ, i.e., usκ = Rκ\{sj |(ai, sj)∈Cont(Ωκ, κ)}. A team Tκ is

called a complete fulfilled team if and only if each skill of

job κ is satisfied by at least one teammate ai∈Ωκ. As soon

as a complete team Tκ is formed for job κ, the execution for

κ starts. Otherwise, i.e., usκ �=∅, team Tκ is a partial fulfilled

team.

IV. TEAM FORMATION IN SOCIAL NETWORKS

Prior to describing the social team formation model, we first

provide the definition of three roles of agents used throughout

the team formation process, i.e. Manager, Contractor and

Freelancer.
Definition 1. Manager, Contractor and Freelancer. Given
a team Tκ of job κ, the agent who initiates κ is called the
Manager, the agent who has joined the team Tκ is called
the Contractor and other agents are Freelancers that the team
Manager can negotiate with.

The team formation model, employed by the manager Iaκ
to build a set of freelancers to work as a team for job κ is

presented in Algorithm 1.

Algorithm 1. Team Formation Model (Iaκ,κ)

1. Initialize Ωκ=Iaκ, Cont(Ωκ, κ)=F (Iaκ), Rκ=Rκ\F (Iaκ).
2. Initialize Tκ=< Ωκ, Cont(Ωκ, κ), Rκ >.

3. While (Itκ ≤ t ≤ Dlκ) % t is the real time %

4. For each contractor aj∈Ωκ

5. For each freelancer ai∈Nei(aj)
6. Negotiate(Iaκ,ai).
7. If ∀sy ∈ Rκ, ∃ax ∈ Ωκ: (ax, sy) ∈ Cont(Ωκ, κ)
8. Finish team formation and start job execution.

9. End For
10. End For
11. End While

In Step 1, as being the initiator of job κ, agent Iaκ is

postulated to contribute all of its owned skills to κ. Meanwhile,

it is also necessary for Iaκ to create a team Tκ to manage

the team contractors and recruit new freelancers (Step 2).

Before the deadline of job κ (Step 3), each team contractor

aj∈Ωκ is responsible for introducing its neighbor freelancers

ai∈Nei(aj) to the team manager Iaκ through the social

interaction (aj ,ai) (Steps 4∼5). By this introduction, the

team manager Iaκ is responsible for negotiating with the

freelancer ai for skill contribution (Step 6). The negotiation

mechanism adopted to make a contract between Iaκ and ai
about which skills to contribute will be discussed in Section

IV-A. Finally, after adequate negotiations, if Iaκ has recruited

sufficient contractors such that they can satisfy all of the skill

requirements of κ, Iaκ will terminate the team formation

process and start to execute job κ (Steps 7∼8).

It is worth noting that this social team formation model

captures a couple of desirable properties that are coincide with

the nature of real-world team formation.

Property 1. Team manager prefers to recruit the freelancers
that have many neighbor agents.

In reality, popular well-connected individuals have large

social influence and thus they can access the relevant resources

easily. Certainly, recruiting these influential social individuals

will expedite team formation [16].

Property 2. Given an freelancer ai, the more neighbors of ai
join the team Tκ, the larger probability ai will join Tκ.

In reality, because of the social affinity among close friends

[17], an individual prefers to join a community if many of his

friends have been members of that community.

Property 3. Each team induces a connected subgraph of the
social networks.

This property satisfies the synergy objective of social team

formation problem [4], requiring that for any contractor ax∈
Ωκ in team Tκ, there must exist at least one social neighbor

ay∈Nei(ax) being a member of Tκ.

A. The Negotiation Mechanism

The negotiation mechanism, employed in the team forma-

tion model, extends the traditional contract net protocol [8] by

allowing a team manager, say Iaκ, and a freelancer, say ai, to

make a contract on skill contribution. This mechanism mainly

consists of three basic phases: i) offer: Iaκ sends an offer to

ai on skill contribution; ii) Response: ai responds to Iaκ (i.e.,
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accept or reject this offer) with the aim of optimizing its own

remuneration and iii) Confirm: Iaκ confirms a final contract

on skill contribution with ai. In the following, we will describe

the three phases in detail.

[Phase 1] Offer[O]. When Iaκ begins to negotiate with ai,
Iaκ first initiatively sends ai an offer on which skills should

ai contribute. The manager Iaκ’s only incentive to recruit

the freelancer ai for using ai’s skills is to maximize its own

expected profit. Thus, it is necessary to discuss the definition

of the team manager’s expected profit before presenting the

offer strategy. Due to the dynamics and uncertainty in social

networks, there are many factors correlated with the manager’s

expected profit, such as,

• The expected value (Ev) attached to job κ at time τ ,

which is given by the average value of finishing the job

κ within the earliest completion time (τ+Wtκ) and the

latest completion time (Dlκ+Wtκ), i.e.,

Ev(κ, τ) =

∫Dlκ+Wtκ
τ+Wtκ

vκ(t)dt

Dlκ − τ
(2)

As time τ approaches closer to the deadline Dlκ, job κ
produces the less expected value to Iaκ.

• The success rate (Sr) of forming a complete team, which

is given by the fraction of job κ’s skills that have

been satisfied by team contractors Ωκ, i.e., Sr(Tκ) =
1 − |usκ|/|Rκ| (|X| denotes the number of elements in

the set X). The larger the value of Sr(Tκ), the higher

possibility a complete team will be formed.

• Team contractors’ total communication cost (TCC) in-

curred by the necessary communication between team

manager and contractors, which is given by TCC(Tκ) =∑
aj∈Ωκ

d(Iaκ, aj).
• Team contractors’ total working cost (TWC) for per-

forming job κ, which is given by TWC(Tκ) =∑
(ax,sy)∈Cont(Ωκ,κ)

Wc(ax, sy).

It is beneficial for the manager of job κ, Iaκ, to recruit the

freelancer ai if ai demands little remuneration, incurs little

communication cost and its joining increases the success rate

for Iaκ to form a complete team.

Definition 2. Expected profit of team manager. For a partial
fulfilled team Tκ=< Ωκ, Cont(Ωκ, κ), usκ > at time step τ ,
the team manager Iaκ’s expected profit is:

Ep(Tκ, τ) = Sr(Tκ) ·Ev(κ, τ)−λTCC(Tκ)−TWC(Tκ) (3)

where Sr, Ev, TCC and TWC are the terms defined above
and the parameter λ is the tradeoff factor that determines
the importance of TCC and TWC.

Given the freelancer ai that the team manager Iaκ is

negotiating with, Iaκ should take all of ai’s available skills

as(ai, Rκ)=F (ai) ∩ Rκ into consideration to identify ai’s
optimal skill contribution that produces the maximal expected

profit for itself. Note that even if there are certain skill

sy∈as(ai, Rκ) that has been satisfied by one of the team

contractors, i.e., ∃ax∈Ωκ: (ax, sy)∈Cont(Ωκ, κ), skill sy still

needs to be considered because the new freelancer ai might

incur less communication cost and demand less working cost

{(s3,18),(s5,24)}{(s2,28)}
a2a2

{((s1,20)),(s3,14),(s5,16)}}

9

17 4

{(s3,15)}

a3a3

a4a4

a5a5

a11a1

a6a6 {(s2,22),(s4,8)}

10

15

{(s1,18)}

Fig. 1: A simple social network. Each agent is associated with the skills it
can provide and the costs of providing these skills. Solid lines indicate the
social connections. Each red dotted line is attached a value indicating the
communication cost between a1 and any other agent.

for providing sy . However, to compute ai’s optimal skill con-

tribution, there are O(2|as(ai,Rκ)|) possible skill combinations

that the manager Iaκ needs to evaluate. Conceptually, Iaκ
could exclude some skill combinations. However, excluding

even a single skill combination may cause Iaκ’s expected

profit to be arbitrarily far from the optimum because the

excluded skill combination may produce the largest expected

profit value. To illustrate this situation, consider a simple social

team formation example.

Example 1. Fig. 1 is a social network constituting six

agents {ai|1≤i≤6}. Now suppose that a job κ is initiated

by agent a1 and its skill requirements are Rκ={si|1≤i≤5}.
To complete κ successfully, agent a1 first needs to negotiate

with his direct neighbors {ai|2≤i≤5} for the unsatisfied

skills {si|2≤i≤5}. Assume that after the negotiation

with agents a2, a3 and a4, the team for job κ becomes

Tκ=<{a1, a2, a3},{(a1, s1), (a2, s2),(a3, s3),(a3, s5)},{s4}>,

i.e., a2 contributes skill s2 to κ and a3 contributes skills s3
and s5. It is easy to achieve that team Tκ’s working cost

TWC(Tκ)=Wc(a1, s1)+Wc(a2, s2)+Wc(a3, s3)+Wc(a3, s5)
=88 and communication cost TCC(Tκ)=d(a1, a2)
+d(a1, a3)=21. Obviously, Tκ is a partial fulfilled team

and then a1 proceeds to negotiate with a5. In the case

that a5 only contributes s3 to κ, the team becomes T
′
κ

=<{a1,a2,a3,a5},{(a1, s1),(a2, s2),(a3, s5),(a5, s3)},{s4}>
with TWC(T

′
κ)=84 and TCC(T

′
κ)=31. Team

T
′
κ is less beneficial than Tκ because

TWC(T
′
κ)+TCC(T

′
κ)=115>109=TWC(Tκ)+TWC(Tκ). It

has the similar result if a5 only contributes skill s5. However,

if a5 contributes skills s3 and s5 to job κ simultaneously,

the team will become T ∗κ=<{a1,a3,a5},{(a1, s1),
(a2, s2),(a5, s3),(a5, s5)},{s4}> with TWC(T ∗κ )=76 and

TCC(T ∗κ )=27. Team T ∗κ is more beneficial than Tκ because

TWC(T ∗κ )+TCC(T ∗κ )=103>109=TWC(Tκ)+TWC(Tκ). �
Therefore, given any freelancer that a team manager is nego-

tiating with, the manager faces the exponential computations

to find the most beneficial skill contribution. To tackle this

computationally complex problem, we propose an efficient

greedy polynomial algorithm by first sorting ai’s available

skills as(ai, Rκ) in increasing order of working cost and

then evaluating these skills in the order of their ranking. A

formal description of the offer strategy implemented by the

manager Iaκ to compute the appropriate skill contribution of

the freelancer ai is shown in Algorithm 2.
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Algorithm 2. Offer(Iaκ, Tκ, ai, ns, τ )

/* ns: the set of skills that freelancer ai should provide;

τ : the current time. */

1. Initialize cur ep=Ep(Tκ, τ), max=-∞, ns=∅.
2. Rank sj∈as(ai, Rκ) such that Wc(ai, s1)≤. . .≤Wc(ai, sl).
3. For 1≤ j ≤ l
4. If Ep(Tκ ⊕ {ns ∪ sj}, τ) ≥ max
5. ns=ns ∪ sj , max=Ep(Tκ ⊕ ns, τ).
6. End If
7. End for
8. If ns �= ∅ && (max− d(Iaκ, ai)) > cur ep
9. Send the offer O=<Iaκ, Tκ, ns> to ai.

In Step 1, before negotiating with ai, the manager Iaκ
first initializes its state: the value cur ep records the current

expected profit of the current team Tκ and ns stores the

skills that freelancer ai should contribute. In Step 2, Iaκ sorts

ai’s available skills as(ai, Rκ) in increasing order of working

cost and then evaluates these skills in the order of their

ranking (Steps 3∼7). In step 4, we use Ep(Tκ ⊕ {ns∪sj}, τ)
to represent Iaκ’s updated expected profit after ai contributes

skills {ns∪sj}. Ep(Tκ⊕{ns∪sj}, τ) is computed as follows:

first Iaκ add ai’s each contributed skill sy∈{ns ∪ sj} to the

current skill contribution function Cont(Ωκ, κ) and if there

exists a team contractor ax∈Ωκ, that has agreed to contribute

sy , remove this skill contribution (ax, sy) from Cont(Ωκ, κ)
and remove this team contractor ax from Ωκ if removing

ax’s skill contribution (ax, sy) leads to ax does not make

any skill contribution to this team; and then Iaκ computes

the updated expected profit Ep(Tκ ⊕ {ns ∪ sj}, τ) of the

updated team configuration Tκ ⊕ {ns ∪ sj}. If the updated

team Tκ ⊕ {ns ∪ sj} produces a larger expected profit than

the previous team Tκ ⊕ ns with the expected profit max,

add skill sj to the required skill set ns (Step 5). Finally,

if Iaκ finds it is beneficial to recruit ai by using its skills

ns (ns �=∅) as well as considering ai’s communication cost

(i.e., max − d(Iaκ, ai)>cur ep), Iaκ will send an offer

O=<Iaκ, Tκ, ns> to ai for skill requirement ns (Steps 8∼9).

Computation complexity of Algorithm 2. In Step 2, sorting

the available skills in increasing order of their working cost

needs O(l2) computations, where l is the number of skills

available in the network. Next in Step 4, evaluating each

skill sj∈as(ai, Rκ) by calculating the expected profit of the

updated team Tκ ⊕ {ns ∪ sj} takes O(3l) computations (one

O(l) is used for checking whether sj has been contributed

and the other O(2l) is used for computing TCC(·) and

TWC(·)). Finally, because there are at most l skills to be

evaluated, the total computation complexity of Algorithm 2

then is O(l2 + 3l2)=O(l2).

Besides its low computation load, Algorithm 2 can always

achieve the optimal solution under some conditions.

Theorem 1. Given a freelancer ai that the team manager
Iaκ is negotiating with, if ai’s available skills as(ai, Rκ) are
exactly what the current team Tκ lacks, i.e., as(ai, Rκ)⊆usκ.
Algorithm 2 returns the optimal skill contribution of ai that
produces the maximal expected profit for Iaκ.

Proof. Before negotiation, assume that Iaκ’s current team

Tκ=< Ωκ, Cont(Ωκ, κ), usκ > and its expected profit is:

Ep(Tκ, τ) = (1−|usκ||Rκ| )Ev(κ, τ)−λTCC(Tκ)−TWC(Tκ) (4)

Suppose that the available skills as(ai, Rκ) have been sort-

ed in the increasing order of their working cost such that

Wc(ai, s1)≤. . .≤Wc(ai, s|as(ai,Rκ)|). Without loss of gener-

ality, we assume that the first skill, derived from Algorithm

2, that decreases Iaκ’s expected profit is the pth (p≥1) skill.

This means that the skill contribution returned by Algorithm

2 is ns=
⋃

1≤j≤p−1 sj and the following inequality holds.1

Ep(Tκ, τ)+
p− 1

|Rκ| Ev(κ, τ)−
∑

1≤j≤p−1

Wc(ai, sj)

>Ep(Tκ, τ)+
p

|Rκ|Ev(κ, τ)−
∑

1≤j≤p

Wc(ai, sj)
(5)

Derived from inequality (5), we have

Wc(ai, sp)− Ev(κ, τ)/|Rκ|> 0 (6)

Now for any alternative skill contribution ns∗ with q (=|ns∗|)
skills, we need to prove Ep(Tκ ⊕ ns, τ) >Ep(Tκ ⊕ ns∗, τ).
Here, we are mainly concerned with the case where q≥p (for

the case q≤p− 1, the proof is similar to this case). It is easy

to achieve that in the case of q≥p, the first (p-1) skills with

the least working costs in as(ai, Rκ) are selected by ns∗ and

the other (q-p+1) skills in ns∗ are arbitrarily selected from the

remaining available skills as(ai, Rκ)\ns. Now we have:

Ep(Tκ ⊕ ns, τ)− Ep(Tκ ⊕ ns∗, τ)

= Ep(Tκ, τ) +
p− 1

|Rκ| Ev(κ, τ)−
∑

1≤j≤p−1

Wc(ai, sj)

− [
Ep(Tκ, τ) + (

p− 1

|Rκ| +
q − p+ 1

|Rκ| )Ev(κ, τ)

−
∑

1≤j≤p−1

Wc(ai, sj)−
∑

sj∈ns∗\ns
Wc(ai, sj)

]

≥ (q − p+ 1)Wc(ai, sp)− q − p+ 1

|Rκ| Ev(κ, τ) > 0

(7)

The equality (7) follows directly from equality (6). Up to this

point, we can conclude that for a given freelancer ai, if its

available skills as(ai, Rκ) do not overlap with the team Tκ’s

satisfied skills Rκ\usκ, Algorithm 2 can always return the

optimal skill contribution. �
As soon as the team manager Iaκ sends the offer O=<

Iaκ, Tκ, ns> to the freelancer ai, ai needs to evaluate this

offer and responds to Iaκ.

[Phase 2] Respond[R]. Prior to describing the response s-

trategy of the freelancer, we first provide the definition of

three states (i.e., Finally-contracted, Tentatively-contracted
and Free) of agents during social team formation.

1During the negotiation with ai, the values Ev(κ, τ) and Ep(κ, τ) are
assumed to be invariable because the time used for computing the appropriate
skill contribution by Algorithm 2 is so short that its effect on Ev(κ, τ) and
Ep(κ, τ) and can be neglected.
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Definition 2. States of agents. During social team formation,
the agents who initiates a job or has been a member of a
complete fulfilled team is in state Finally-contracted; the agent
who has been a member of a partial fulfilled team is in state
Tentatively-contracted; and the agent who neither initiates a
job nor has joined a team is in state Free .

Agents in different states might have different response

strategies. Thus, it is necessary to devise different response

strategies for the freelancer ai within different states.
Case 1) ai is Free. In this case, ai will accept Tκ’s offer.

This is because joining a team to perform a job can obtain

some financial remuneration, which is a rather economical

choice compared to the free state that has no remuneration.
Case 2) ai is Tentatively-contracted. Suppose that ai has

contracted with a partial team Tκ∗ . Now ai receives a new

offer O=<Iaκ, Tκ, ns> from Tκ. A dilemma now is faced

by ai: breaking the contract with the original team Tκ∗ to

participate in this new team Tκ or rejecting the new offer O(·).
Here, we use the measure of expected remuneration (per unit

time) to quantify how much ai gains by rejecting or accepting.

On one hand, staying in the original team Tκ∗ , ai will achieve

the expected remuneration (per unit time):

Er(ai, Tκ∗ , τ) =
Sr(Tκ∗ , τ)

∑
(ai,sj)∈Cont(Ωκ∗ ,κ∗) Wc(ai, sj)

Wtκ∗
(8)

In (8), Sr(Tκ∗ , τ)=(1-|usκ∗ |/|Rκ∗ |)(Dlκ∗ − τ ) indicates the

success rate of team Tκ∗ that will be formed completely;∑
(ai,sj)∈Cont(Ωκ∗ ,κ∗) Wc(ai, sj) indicates the remuneration

obtained by ai if job κ∗ is finished successfully. Wtκ∗

indicates the period it will take to finish κ∗. On the other hand,

joining the new team Tκ that sends offer O=<Iaκ, Tκ, ns>,

ai will obtain the expected remuneration (per unit time):

Er(ai, Tκ, ns, τ) =
Sr(Tκ, τ)

∑
sj∈ns Wc(ai, sj)

Wtκ
(9)

where Sr(Tκ)=(1-|usκ\ns|/|Rκ|)(Dlκ − τ ) indicates the suc-

cess rate of team Tκ formed completely if ai contributes the

required skill ns. The meanings of other terms are similar to

those discussed in (8). Finally, as a self-interested individual,

ai prefers to join the team that produces a larger expected

remuneration (per unit time) for itself. In other words, if

Er(ai, Tκ∗ , τ)≥Er(ai, Tκ, ns, τ), ai will stay in the original

team Tκ∗ and reject the offer of Tκ; otherwise, ai will break

the contract with the original team Tκ∗ and accept Tκ’s offer.
Case 3) ai is Finally-contracted: In the case that the team

Tκ of which ai is a member has recruited sufficient contractors

that can satisfy all of job κ’s skill requirements and has started

job execution, ai will reject any new offer until job κ finished.

This is because each contractor can only be one team member

and breach the contract with the complete team will suffer

tremendous monetary penalty or reputation loss [11].
As soon as the freelancer ai makes a decision on

the new offer O(·), ai will send a response R=<
acceptance/rejection> to the team manager Iaκ. And if Iaκ
receives the acceptance response from ai, Iaκ needs to make

a final confirmation for this acceptance.

[Phase 3] Confirm[C]. For the freelancer ai that accepts its

offer O=<Iaκ, Tκ, ns>, the team manager Iaκ first needs to

make a tentative contract with ai on skill contribution ns (a

tentative contract means that before Tκ is formed completely,

Iaκ can adjust ai’s skill contribution to Tκ). And if ai’s skill

contribution leads to a complete team for job κ, this contract

will become a final contract such that ai cannot breach the

contract unilaterally until κ is finished. Then, Iaκ updates

its team configuration by adding the skills
⋃

sj∈ns(ai, sj)
to Cont(Ωκ, κ), removing the duplicated skill contributions

provided by other team contractors and removing the team

contractors that do not contribute skills any more.

Up to this point, we have illustrated the entire negotiation

process between a team manager and a freelancer. A formally

description of this negotiation mechanism adopted in Algo-

rithm 1 (Step 6) can be seen in Algorithm 3.

Algorithm 3. Negotiate(Iaκ,ai)
1. Manager Iaκ calls Algorithm 2 to generate the offer O=<
Iaκ, Tκ, ns> and sends the offer O(·) to ai.

2. If ai is Free
3. Freelancer ai sends response R=< acceptance > to Iaκ
4. Else If ai is Tentatively-Contracted &&

Er(ai, Tκ∗ , τ) <Er(ai, Tκ, ns, τ)
% Tκ∗ is the current team of which ai is a member %

5. Freelancer ai sends R=< acceptance > to Iaκ
6. Else Freelancer ai sends R=< rejection > to Iaκ.

7. If R==< acceptance >
8. Iaκ contracts with ai and updates team configuration.

V. EXPERIMENTS

A. Experiment setting

In this section, we will validate the effectiveness of the

proposed social team formation model in simulated agent

networks. Each network consists of 200 agents, which are

interconnected by a random network model used in [18]. There

are 16 type skills available in each network. Each agent owns

U(1,4) type skills (U(a,b) returns the value in the range [a,b]

uniformly) and the working cost of each skill is set U(1,10).

The communication cost between each pairwise agents is set

U(1,10). At each time step, a job κ arrives at the network with

a probability p=0.1∼0.9. The number of skills required by a

job is set U(1,16). The period that is needed to accomplish a

job (i.e.,Wtκ) is drawn from U(20,40) and the deadline of a

job (i.e., Dlκ) is set in the range [Itκ, Itκ+20], which must be

greater than the job κ’s initialization time Itκ. The parameter

λ used to trade-off the communication cost and working cost

is set 0.2∼2.

We compare our social team formation model (Our model)
with three other models, i.e., the benchmark centralized opti-

mal model (OPT), the distributed simple contract net (SCN)

and complex bilateral bargaining model (CBB) models.

• Optimal Model (OPT) [5]. In this model, there is

a central controller maintaining information on all of

the agents’ working costs and locations. When a job

submitted to the system, the controller can build a team
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(a) (b) (c) (d)

Fig. 2: Social welfares of different models relative to OPT on (a) network degree, (b) job arrival rate, (c) job discount rate and (d) tradeoff factor λ.

of agents that have the least working and communication

costs in the network. This is an ideal model, which is

impractical, but it can be used as an upper bound of

system performance.

• Simple Contract Net Model (SCN) [8]. In this model,

each agent submits the bid to the manager whose job has

the largest profit value and the team manager only select

the bidders that have the skills the current team lacks.

Compared to this model, the significance of accounting

for all of the bidder’s available skills could be revealed.

• Complex Bilateral Bargaining Model (CBB) [10]. In

this model, job managers are assumed to have no prior

knowledge of workers’ working price. And the manager

negotiates with the workers round and round until they

reach an agreement on skill price. Compared to CBB,

the advantage of our model with simple negotiation

mechanism could be revealed.

We evaluate the performance of these models through

social welfare (SW) and the team formation time. SW is

computed as the sum of all manager agents’ profits, i.e.,

SW=
∑

κi∈K
(
vκi

(ct)−λTCC(Tκi
)−TWC(Tκi

)
)

(10)

where ct is job’s completion time and for the job that is not

completed successfully, its completion time is set infinite.

B. Simulation results

Fig. 2(a)∼Fig. 2(d) show the percentage social welfares

achieved by our model, CBB and SCN, respectively, compared

to the social welfare of the OPT. These results are recorded

by averaging over 40 instances.

Fig. 2(a) shows the percentage social welfares of these

models on network degree, where job arrival rate is 0.4, job

discount rate is 0.1 and the trade-off parameter λ is 1. In Fig.

2(a), as the network degree increases, the social welfares of our

model, CBB and SCN increase gradually and our model can

evenly reach to 80% of OPT. This can be understood from two

perspectives: 1) when the managers have more neighbors, they

can access more skills, leading to an increment probability in

forming complete team; and 2) the more neighbors, the more

easily these managers can build teams of professional agents,

and consequently, the less time is required for team formation.

Thus, these distributed models perform better in the system

with larger network degree.

Fig. 2(b) shows the percentage social welfares of these

models on job arrival rate, where network degree is 8, job

discount rate is 0.1 and λ is 1. In Fig. 2(b), the social welfares

of the three distributed models decrease with job arrival rate,

i.e., the more frequency jobs arrive at the system, the less

social welfare they will achieve compared to OPT. This finding

can be explained as follows: as job arrival rate becomes larger,

the manager will have to manage more jobs; and because the

manager has limited neighbors, these overloaded jobs either

have to wait the manager’s neighbors’ skills that are being

used by other jobs or have to take much time to negotiate

with the remote agents. However, these remote negotiations

might be unaccessible because there is no social interaction

available for introducing these remote negotiations, thereby

making certain team formation unsuccessful. While OPT is

capable of communicating all of system agents, therefore it

can take full advantage of the skills distributed on the system.

Fig. 2(c) shows the percentage social welfares of these

models on job discount rate, where network degree is 8, job

arrival rate is 0.4 and λ is 1. In Fig. 2(c), as the job discount

rate increases, the social welfare of the CBB decreases as

well, but our model and SCN perform almost invariably. The

potential reason is that CBB always takes much time for agents

to reach an agreement on working price, leading to a large

team formation time (the team formation time results can be

seen in Fig. 3). Because the value function attached to each job

is a conciliatory function xδ (0<δ<1) and when the variable

x→0 (i.e., the team formation time in CBB approaches to the

deadline), xδ1�xδ2 if 0<δ1�δ2<1. Therefore, the larger the

discount rate, the more social welfare of CBB will decrease.

On the other hand, when x→1 (i.e., it does not take much

time for team formation in our model and SCN), xδ1�xδ2

if 0<δ1�δ2<1. Therefore, the job discount rate has no

significant effect on our model and SCN’s performance.

Fig. 2(d) shows the percentage social welfares of these

models on the trade-off parameter λ, where network degree

is 8, job arrival rate is 0.4 and the job discount rate is 0.1. In

Fig. 2(d), as the communication factor becomes more crucial

(i.e., λ becomes larger), these distributed models perform

worse. This is because that the OPT model can always find a

team of agents that incur the least communication cost, while

these distributed local models cannot perform that well. It is

also should be noted that λ has a larger effect on SCN: its

performance decreases from 70% to 50% when λ varies from

0.2 to 2. This can be explained by the fact that the agents in

SCN always submit bids to the job that has the highest profit

and the manager only selects these bidders that have the skills

it lacks, ignoring their communication costs.

In summary, our model performs consistently better than the

CBB and SCN models. The potential reason is that compared
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Fig. 3: The team formation time of distributed team formation models.

to the CBB, our model reduces much team formation time

and compared to SCN that only negotiates on the unsatisfied

skills, our model considers each available skill, because this

kind of skill might demand less working cost and its owner

might incur less communication overhead.

Fig. 3 shows the average team formation time of each job

in the three distributed models. From Fig. 3, we can determine

that: 1) The team formation time of these models decreases

with network degree. The reason is that when the managers

have more neighbors, they can access the lacked skills more

easily. 2) The managers in CBB take much more time than

our model and SCN on building teams. This is because that

in CBB, the negotiation between a manager and contractor

proceeds multiple rounds until they reach an agreement on

working price. However, in our model, when the manager

and contractor do not reach an agreement on skill contribution

within one negotiation round, the manager will terminate this

negotiation and proceeds to the next round negotiation with

another freelancer that demands the less remuneration and

reside in closer location that incurs less communication cost.

3) When network degree becomes larger (≥10), SCN forms

teams faster than our model. This is because that compared

to our model with redundant negotiation on satisfied skills, in

SCN model, if each manager has sufficient social neighbors, it

is more timesaving for him to send offers for requiring these

skills what exactly he lacks.

VI. CONCLUSION

In this paper, we propose a practical and efficient team for-

mation model for the non-cooperative social networks where

individuals are self-interested. In terms of practicability, we

mean that compared to the traditional models with cooperative-

ness assumption, our model considers individuals’ selfish be-

haviors and individuals build and join teams in a self-organized

manner, which is in accordance with real-world applications.

By the efficiency, we mean that our model achieves 80% social

welfare compared to the ideal centralized model on average,

and compared to other conventional distributed models, our

model reduces the team formation time significantly while

maintaining beneficial teams where team members demand

little working and communication costs.

In this study, the manager and contractor are allowed to

decommit from tentative agreement arbitrarily. In reality, how-

ever, if one contract party breaches the agreement unilaterally,

he needs to pay a compensation to the other contract party

[10]. Therefore, in the future work, it is essential for us to

extend the current social team formation model by allowing

for individual’s compensatory decommitment strategy.
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