Multiagent-Based Resource Allocation for Energy Minimization in Cloud Computing Systems

Wanyuan Wang, Yichuan Jiang*, Senior Member, IEEE, Weiwei Wu

Abstract—Cloud computing has emerged as a very flexible service paradigm by allowing users to require virtual machine (VM) resources on-demand and allowing cloud service providers (CSPs) to provide VM resources via a pay-as-you-go model. This paper considers the CSP’s problem of efficiently allocating VM resources to physical machines (PMs) with the aim of minimizing the energy consumption. Traditional energy-aware VM allocations either allocate VMs to PMs in a centralized manner or implement VM migrations for energy reduction without considering the migration cost in cloud computing systems. We address these two issues by introducing a decentralized multiagent(MA)-based VM allocation approach. The proposed MA works by first dispatching a cooperative agent to each PM to assist the PM in managing VM resources. Then, an auction-based VM allocation mechanism is designed for these agents to decide the allocations of VMs to PMs. The theoretical analyses suggest that this auction-based mechanism has a high performance on reducing energy cost. Moreover, to tackle system dynamics and avoid incurring prohibitive VM migration overhead, a local negotiation-based VM consolidation mechanism is devised for the agents to exchange their assigned VMs for energy savings. We evaluate the efficiency of the MA by using both static and dynamic simulations. The static experimental results demonstrate that the MA can incur acceptable computation time to reduce system energy cost compared with traditional bin packing-based and genetic algorithm-based centralized approaches. In the dynamic setting, the energy cost of the MA is similar to that of benchmark centralized resource consolidation approaches, but the MA largely reduces the migration cost.

Index Terms—Cloud computing systems, resource allocation, energy cost, migration cost, multiagent, negotiation.

1 INTRODUCTION

Cloud computing provides flexible and cost-effective services for enterprises, organizations and individuals running computational and data-intensive applications [1]. Through cloud computing platforms (e.g., Amazon EC2, Google AppEngine, and Microsoft Azure), users can submit their resource (e.g., CPU, memory, storage and network, etc.) request to cloud service providers (CSPs). The CSPs then provide the users the required resource in the form of a virtual machine (VM, acting like a real computer) in exchange for financial remuneration [2]. Generally, an effective VM resource allocation should not only deliver scalable services to satisfy various user requirements with the aim of increasing the CSP’s profit [3][4], but also conserve the energy consumption of the physical machines (PMs) used for running users’ applications with the aim of decreasing the CSP’s cost [5-7]. In this paper, we are mainly concerned with developing energy-aware resource allocation approach of allocating VMs to PMs with the aim of minimizing system energy cost, which is a fundamental problem in cloud computing systems [8-27].

A straightforward idea to make a cloud system energy efficient is to develop energy-proportional PMs, i.e., each PM consumes energy only in proportion to the VM loads it undertakes [8]. For this purpose, many technologies such as using high-quality power supplies and voltage regulation modules, have been introduced to achieve PM energy proportionality [9][10]. However, even though equipped with energy-proportional PMs, the cloud system’s energy consumption is far from optimal due to inefficient allocation of VMs to PMs [11-15]. In cloud computing systems, PMs are heterogeneous with various resources and operation costs and VMs are heterogeneous with different resource requirements [16]. An undesirable allocation of allocating the large-size VMs to costly PMs might consume tremendous energy [17-20].

Due to its significance to build green cloud systems, the energy-aware VM resource allocation problem has been studied widely, and a number of approaches have been proposed [11-27]. However, from these approaches, we find there are two aspects that need to improve. First, most of existing approaches assume that there is a central resource manager that can monitor and maintain information about all PMs and VMs and thus can allocate VMs to PMs in a centralized manner [11-14][16-26]. Although centralization can guarantee high system performance, its low robustness with a single point of failure creates a
vulnerable cloud system [28][29]. Second, because cloud systems are dynamic with dynamic VMs arrival and departure, VM live migration is necessary for resource consolidation. The migration cost (e.g., network traffic cost), occurs when a VM is migrated from one PM to another PM, which is also crucial to the performance of cloud computing systems [30][31]. However, many approaches [15][19][23][24] transfer VMs among PMs without considering the VM migration cost.

To address the above two issues, in this paper we introduce a decentralized multiagent(MA)-based resource allocation approach by dispatching a cooperative agent to each PM to assist the PM in managing resources. For a set of VM requests newly submitted to the cloud systems, the proposed MA approach allocates these VMs to suitable PMs by the following two sequential stages (Fig. 1 depicts the framework of the MA resource allocation approach):

- **Auction-Based VM Allocation.** In the first stage, an auction-based VM allocation mechanism is devised for agents to decide which PM hosts which newly submitted VMs. Theoretical analyses suggest that the auction-based VM allocation mechanism has a high performance guarantee on reducing energy cost compared with the optimal solution.

- **Negotiation-Based VM Consolidation.** To tackle system dynamics and avoid incurring prohibitive VM migration overhead, a local negotiation-based VM consolidation mechanism is devised for agents to exchange their assigned VMs for energy cost savings.

We conduct both static and dynamic simulations to evaluate the effectiveness of the MA resource allocation approach. In the static setting with hundreds of VMs, within several seconds, the MA approach can reduce system energy cost significantly compared with benchmark bin packing-based and genetic algorithm-based centralized approaches [13][23][24]. The dynamic experimental results demonstrate that the MA approach can adapt to system dynamics well by consuming as little energy as the centralized and distributed resource consolidation approaches [11][13][15][23][24], but largely reducing the migration cost, showing its great potential for real-world applications.

The remainder of this paper is organized as follows. In Section 2, we provide a thorough review of related work on resource allocation in cloud computing and multiagent systems. In Section 3, we formulate the VM allocation problem with the objective of energy cost minimization. In Section 4, we propose MA-based resource allocation and consolidation mechanisms. In Section 5 we conduct two series of experiments to validate the MA approach’s effectiveness in reducing system energy cost. Finally, we conclude our paper and discuss future work in Section 6.

2 RELATED WORK

Generally, from the CSP’s perspective, effective (VM)resource allocation should satisfy the following two properties: i) allocating the VMs to the users optimally such that the social welfare achieved from the user maximal; and ii) allocating the VMs to PMs optimally such that the energy cost produced by the PMs minimal. Therefore, in this section, we first discuss the social-aware and energy-aware resource allocation researches in Section 2.1 and Section 2.2, respectively. Since the main contribution of this paper is to utilize multiagent technology to address the resource allocation problem in cloud computing systems, then finally we briefly review multiagent-based resource allocation in traditional applications in Section 2.3. Fig. 2 depicts the classifications of resource allocation researches in cloud computing systems.

2.1 Social Welfare-Aware Resource Allocation in Cloud Computing Systems

Auction-based resource allocation model has been used as an economic paradigm for the CSPs providing the VM resources to the valuable users [32-38]. In the auction model, the users first submit their request on how many VM resources they require and how much they value the required VMs and then the CSP determines to allocate which VM resources to which users such that social welfare maximal. To maximize social welfare while inducing the users to declare their true private information, Nejad et al. [32] propose a VCG-based truthful mechanism to achieve the optimal social welfare. However, since the social-welfare maximization problem is a NP-hard combinatorial optimization problem [33], VCG mechanism is computation intractable in the large-scale cloud systems. Therefore, the approximation truthful mechanisms taking into account the tolerance computation time are more desirable for CSP [34]. Moreover, to deal with the real world dynamic environment, an online truthful mechanism is introduced by [35], which is invoked as soon as a user submits a request or some of the allocated VMs are released and become available. Zhang et al. [36] improve the online truthful mechanism by designing a randomized mechanism that can provide a constant approximation ratio on social welfare and Zhang et al. [37] improve the online mechanism by considering the more flexible bidding language such that a user can also be satisfied if his required resources are accessible during a time period. Although these mechanisms are efficient in achieving desirable social welfare, all of them do not consider the operation cost such as energy cost for running the users’ application. Reducing the energy cost not only increases the CSP’s net revenue, but also helps build green cloud systems [38].

Huu and Tham [38] first integrate the energy cost factor into the auction model, where they propose a truthful and competitive truthful mechanism to optimize the CSP’s net revenue (i.e., social welfare minus energy cost). On the other hand, Xu and Li [6] propose a pricing mechanism to adjust the price optimally to make a tradeoff between the revenue achieved from the users and the energy cost produced by the PMs. All these market-driven mechanisms only focus on allocating how many resources to users and which VMs to which users to maximize CSP’s revenue, they do not focus on how to allocate the VM applications to the PMs in the back-end cloud data centers to minimize energy cost. Our study mainly focuses on developing an effective resource allocation approach to minimize system energy cost, which is also a fundamental problem in cloud computing systems [8-27].

2.2 Energy-Aware Resource Allocation in Cloud Computing Systems

The energy-aware resource allocation researches can be further classified into three groups: bin-packing based static resource allocation (i.e., given a set of VMs and PMs, how to allocate the VMs to PMs to minimize PMs’ energy cost), energy-aware dynamic resource consolidation (i.e., systems are dynamic with new VM request submitted and old VMs released, how to consolidate system VMs for energy cost savings) and energy and Service
Level Agreement (SLA)-aware dynamic resource consolidation (i.e., how to consolidate system VMs with the bi-objectives of reducing energy cost and SLA violation).

2.2.1 Bin Packing-Based Static Resource Allocation

Recent studies have shown that PMs, which are used to run VMs, consume a high percentage of the power in cloud computing systems [10]. One natural objective of efficiently allocating VMs to PMs is to reduce the number of active PMs, which can be called static resource allocation. Intuitively, the static energy-aware resource allocation problem can be modeled as the bin-packing problem, where VMs and PMs are the items and bins, respectively in the bin packing problem. For this transformed bin packing problem with liner usage costs, Cambazard et al. [21] first compute the lower bound of the optimal solution and then design a polynomial cost-based propagation allocation algorithm. By considering the multi-dimensional resource types of PMs, Li et al. [17] present a multi-dimensional space partition model for the multi-dimensional bin packing problem. Based on this model, they then propose a balance VM allocation approach to alleviate the imbalanced utilization of the multi-dimensional resources and thus lower the energy consumption. These static resource allocation approaches are all restricted to the one-shot or offline setting, not targeting on an online setting where VMs arrive and depart the cloud system dynamically. In this kind of dynamic cloud systems, VM consolidation is very necessary to reduce system energy cost [11][15][27][39].

2.2.2 Energy-Aware Dynamic Resource Consolidation

Live migration technology [40], allowing a VM to be migrated from one PM to another PM, has proved to be effective in addressing resource consolidation [13][27]. Motived by the classical online bin packing approach, Song et al. [19] propose an adaptive resource consolidation approach to minimize the number of active PMs. During VM migration, on the one hand, the system should move VMs on source PM with a low resource utilization to another target PM, thus allowing the source PM to switch off without consuming any power. On the other hand, the system should also avoid the target PM over-utilized. To achieve these goals, a threshold-based resource consolidation approach has been investigated [13][15][20][39]. This approach works by first determining two thresholds, the high threshold \(b_h \) and the low threshold \(b_l \). When the resource utilization of a PM \(p_i \) exceeds \(b_h \), the system will transfer some VMs on \(p_i \) to another PM for hot spot avoidance. When the resource utilization of \(p_i \) falls below \(b_l \), the system will migrate all of the VMs on \(p_i \) to another target PM for energy saving. In dynamic cloud systems, to predict the two thresholds \(b_h \) and \(b_l \) precisely, these researches all assume that there exists a central manager that monitors and maintains information about all PMs and VMs. Our approach does not need such a central manager, instead allowing the PMs to manage resources in a distributed manner, thereby improving system robustness. Moreover, another deficiency of these dynamic energy-aware resource consolidation approaches is that they only focus on the advantage of live migration on reducing energy cost, do not consider its negative effect on violating Service Level Agreement (SLA), such as reducing system throughput and increasing system response time [41][42].

2.2.3 Energy and SLA-Aware Dynamic Resource Consolidation

To reduce system energy consuming while reducing SLA violation, Verma et al. [11] and Ardagna et al. [12] first transform this bi-objective (i.e., energy cost minimization and SLA violation minimization) problem to a single objective problem by setting a tradeoff weight between these two objectives. And then they model this single objective problem as a mixed integer nonlinear programming problem, which can be solved by the competitive approximate algorithms [11][12]. One challenge of transforming the bi-objective problem to a single objective problem is how to set the tradeoff weight between the two objectives. Kord and Haghighi [22] exploit the fuzzy-based Analytic Hierarchy Process (AHP) method to determine the tradeoff weight between the multiple objectives. The main idea behind the fuzzy-AHP model is that the system first determines the relative importance of each objective by pairwise comparison. And then determine the related intermediate priorities of these candidate destination PMs with respect to each objective. Finally, the global priority of each candidate PM is determined by summing all priorities with respect to each objective [43].

Another efficient way to tackle the bi-objective resource allocation problem is to utilize the evolutionary computation (EC) algorithms, including the Genetic Algorithm (GA) [23][24], swarm intelligence algorithms such as Particle Swarm Optimization (PSO)[25][26]¹ and Ant Colony Optimization (ACO) [27]. For example, in the GA algorithm [23], a “chromosome” represents an allocation solution of VMs to PMs. To begin, GA randomly generates a population of potential chromosomes and evaluates the fitness values (i.e., objective value) of these candidate solutions. And in the second step, the desirable chromo-

¹ For more details on evolutionary computation-based resource allocation approaches in cloud systems, we refer interested readers to the recent survey paper [44] and the references therein.
omes with higher fitness values (e.g., produce little energy cost and violate SLA little) are selected as the parent chromosomes and to crossover the next generation chromosomes. The PSO has a similar optimization process with GA, where in the first step, a set of particles that represent VM allocation solution are randomly initialized. In the second step, based on the local best position and the global best position, each particle improves its fitness value by updating its current position in the population [25]. In the ACO algorithm, a VM migration plan $s = (p, v, p)$, which means the VM v is migrated from the source PM p_i to the destination PM p_j, is modeled as the edge connected the cities in traveling salesman problem. Then the ants will deposit some pheromone on the migration plan s if s not only reduces energy cost but also guarantees SLA.

Iteratively, the migration plan associated with higher pheromone concentration will constitute the global VM migration solution [27]. Although these nature-inspired EC algorithms and fuzzy control-based heuristics are efficient in improving cloud system performance such as reducing energy cost and guaranteeing SLA performance, their efficiency depends much on system parameters such as the mutation probability in GA, the acceleration coefficients of the local and global best position in PSO, the pheromone evaporation rate in ACO, the evolution termination condition in GA, ACO, and PSO, and the importation intensity between any pair of objectives in fuzzy-based AHP approach. In contrast, our multiagent approach depends less on system parameters, making it more practical for the real-world applications.

2.3 Multiagent-Based Resource Allocation

Multiagent technology, which is derived from distributed artificial intelligence (DAI), has shown its effectiveness in addressing distributed system problems [45]. Example applications include coalition formation in the business-to-business (B2B) domain [46], routing in robotics [47], mobile agent-based load balancing in grids [48], negotiation-based task allocation in grids and social networks [49][50], and agent-based modeling for social networks [51]. Recently multiagent technology to tackle cloud resource allocation has received increasing attention. For example, An et al. [52] introduce a bilateral bargaining-based resource negotiation mechanism for users accessing necessary resources. Zhao et al. [53] propose a multiagent-based resource trading protocol to trade efficient and fair resources among selfish users in community cloud systems. Sim [54] presents a systematic agent-based cloud computing model, where agents are developed to support service discovery, service negotiation and service composition. The work of Sim [54] is further investigated by Chen et al. [55] by extending contract net technology to maximize a cloud system’s throughput.

Although these approaches are efficient in addressing traditional resource allocation problems, they are inadequate for VM resource allocation in network cloud systems. In network cloud systems, PMs are always interconnected by a communication network. Because of arbitrary negotiation and task migration among PMs, the above approaches [45-55] will consume prohibitive network bandwidths, thereby violating SLA largely. This paper proposes an efficient local resource negotiation mechanism that limits agents’ coordination domain locally. Under this local coordination domain constraint, an efficient negotiation-based VM consolidation mechanism is proposed to reduce system energy cost while incurring tolerable migration overhead.

3 Problem Description

We consider a cloud system $CS = \langle P, E \rangle$ consisting of a set of PMs $P = \{p_1, p_2, ..., p_n\}$ interconnected by a communication network and $\forall (p_i, p_j) \in E$ indicates that p_i and p_j can communicate with each other through only one switch. Denoted by $d(p_i, p_j)$ the communication distance between PMs p_i and p_j and $d(p_i, p_j)$ is computed as the number of switches along the shortest path between p_i and p_j. Let $\Theta = \{\theta_1, \theta_2, ..., \theta_m\}$ be the set of VM resource (e.g., CPU, memory, storage, bandwidth, etc.) required by users. For simplicity, in this study we consider only one type of resource requirement (e.g., CPU) and denoted by r the amount of resources required by VM $\theta \in \Theta$. Each PM owns a number of resources that are capable of running multiple VMs and denoted by c the amount of resources at PM p_i. To satisfy the submitted VMs’ resource requirements, some suitable PMs should be selected to host them, which can be called the VM allocation problem. A feasible VM allocation $\{\Theta(p_1), \Theta(p_2), ..., \Theta(p_m)\}$ is defined as a mapping of PM $\forall p \in P$ to a set of VMs $\Theta(p)$, which must satisfy the following two conditions:

1) Each VM is allocated to at least one PM and no VM is allocated to more than one PM, i.e.,

$$\bigcup_{p \in P} \Theta(p) = \Theta, \quad \Theta(p_i) \cap \Theta(p_j) = \emptyset, \forall 1 \leq i, j \leq m, i \neq j$$

2) For each PM, the total resource requirements of its hosted VMs do not exceed its available resources, i.e.,

$$\sum_{\theta \in \Theta(p)} r_i \leq c, \quad \forall 1 \leq i \leq m$$

In addition to satisfying the above two conditions, the ultimate objective of VM allocation is to minimize the total system PM’s energy cost. Although many technologies have been used to develop energy-proportional PMs [9][10], each PM is far from energy-proportional [5][13]. Therefore, to simulate a more practical application, we can model the energy cost function of each PM p_i as

$$e_i(u_i) = \begin{cases} \alpha \cdot \hat{\alpha} \cdot (1-\alpha) \cdot \hat{\lambda} \cdot u_i, & u_i > 0; \\ 0, & u_i = 0. \end{cases}$$

where $\hat{\lambda}$ is the maximum energy consumed when p_i is fully utilized, α is the fraction of the maximum energy consumed when p_i is idle and u_i is the resource utilization of p_i, which is computed as $u = \sum_{\theta \in \Theta(p)} r_i / c$. When p_i is active for running VMs (i.e., $u > 0$), its energy cost $e_i(u_i)$ is then an affine function of its resource utilization u. Otherwise, when p_i is idle (i.e., $u = 0$), p_i should be turned off, avoiding consuming any energy cost. Now, we will give the formal definition of the VM allocation problem.

Definition 1. VM Allocation Problem. Given a set of VMs $\Theta = \{\theta_1, \theta_2, ..., \theta_m\}$ and a set of PMs $P = \{p_1, p_2, ..., p_n\}$, the VM allocation problem is to determine the optimal allocation of VMs Θ to PMs P with the minimum energy cost E, i.e.,

$$\text{Minimize } E = \sum_{i=1}^{m} e_i(u_i)$$

Subject to:

$$\sum_{i=1}^{n} r_i x_{ij} \leq c_j, \quad \forall i \in 1, ..., m$$

$$u_i = \sum_{i=1}^{m} r_i x_{ij} / c_j, \quad \forall i \in 1, ..., m$$

$$x_{ij} \in \{0, 1\}, \sum_{i=1}^{n} x_{ij} = 1, \quad \forall i = 1, ..., m, j = 1, ..., n$$
The variable \(x_i \in [0, 1] \) is the decision variable, where \(x_i = 1 \) indicates VM \(\theta_i \) is allocated to PM \(p_i \); otherwise \(x_i = 0 \).

It is not hard to determine that solve this VM allocation problem is NP-hard because the traditional NP-hard Bin-Packing problem \([56]\) is a special case of this problem by setting \(a_1 = a_2 = \ldots = a_m \), \(\lambda_1 = \lambda_2 = \ldots = \lambda_m = \lambda \) and \(c_1 = c_2 = \ldots = c_m = c \). Therefore, it is very essential to devise efficient polynomial approximation algorithms.

4 MULTIAgENT-BASED SELF-ORGANIZED RESOURCE ALLOCATION

We formulate the distributed multiagent-based resource allocation approach as follows. First, we dispatch a co-operative agent \(a \) to each PM \(p \). These agents \(A = \{a_1, a_2, \ldots, a_n\} \) are deployed to assist the PMs in managing resources (hereafter, the terms “agent” and “PM” are used interchangeably). And then we devise the coordination mechanism for these agents to make decisions on which PMs should host which VMs in pursuit of the energy cost minimization. For a set of newly submitted VMs, this multiagent-based VM allocation approach of allocating these VMs to PMs mainly consists of the following two complementary stages:

- **Auction-Based VM Allocation.** An auction-based mechanism is devised for the agents to decide the allocation of the submitted VMs to PMs (Section 4.1).
- **Negotiation-Based VM Consolidation.** A local negotiation-based VM consolidation mechanism is devised for the agents to exchange their assigned VMs for energy cost saving (Section 4.2).

4.1 Auction-Based VM Allocation

In the market-oriented auction architecture \([46]\), the bidders represent the commodity demanders that have a pressing need for the commodities. They express their needs by submitting bids on the price they would like to spend on the commodities. The proposed auction-based VM allocation mechanism works as described in Algorithm 1, where agents are modeled as bidders and VMs are modeled as commodities. In Algorithm 1, initially, all newly submitted VMs \(\Theta \) are unallocated. At each bidding round (Steps 2–8), each agent \(a \) only bids for a single VM and it always bids for the largest unallocated VM that it is capable of hosting (Step 3). After bidding for the target VM \(\theta_a^* \), each agent \(a \) broadcasts its bid \(B_a \) to all other agents for winner determination. A bid \(B = (p, \lambda/c) \) consists of the PM identity \(p \) and its cost-capacity ratio \(\lambda/c \) (Step 5). After all bids are broadcasted, all of the agents send a winner acknowledgment message \(\langle Ack \rangle \) to the winner agent that has the minimum cost-capacity ratio (Step 7). In the event of a tie, the agent that has the smallest index is selected as the winner. In step 8, the agent \(a \) that receives acknowledgment from all other agents wins the current round bidding. The winner agent \(a \) is then responsible for running its target VM \(\theta_a^* \) informing all other agents that \(\theta_a^* \) has been allocated. The above bidding process (Steps 2–8) proceeds round by round until all VMs are allocated (Step 1).

Besides simplification, another important property of Algorithm 1 is its efficiency on reducing energy cost, which can be measured by the approximation ratio \([57]\).

Definition 2. Approximation Ratio. For a cloud system with a list of VMs \(\Theta \) to and a set of PMs \(P \), let \(A(\Theta, P) \) and \(OPT(\Theta, P) \) be the system energy cost generated by the approximation algorithm \(A \) and the optimal solution \(OPT \), respectively. The approximation ratio \(S(A) \) of algorithm \(A \) then can be defined as:

\[
S(A) = \sup \{ A(\Theta, P) / OPT(\Theta, P) \}
\]

Before presenting the approximation ratio of Algorithm 1 in Theorem 1, we first present a simple proposition that is helpful to prove Theorem 1.

Proposition 1. Assume two positive integer sets \(X = \{x_1, x_2, \ldots, x_n\} \) and \(Y = \{y_1, y_2, \ldots, y_m\} \) satisfy \(x_i \leq y_i \), \(\forall 1 \leq i \leq m \) and \(1 \leq x_i \). If we randomly pick \(k \) elements \(X = \{x_1, x_2, \ldots, x_k\} \) from \(X \), \(k \) elements \(Y = \{y_1, y_2, \ldots, y_k\} \) from \(Y \), and \(X \) and \(Y \) satisfy \(\sum_{i=1}^{k} x_i \geq \sum_{i=1}^{k} y_i \), then we have \(k \leq k \).

Theorem 1. The approximation ratio of Algorithm 1 is \(S(\Theta) = 1 + \lambda_{\text{max}}/\lambda_{\text{min}} \), where \(\lambda_{\text{max}} = \max(\lambda_i, 1 \leq i \leq m) \) and \(\lambda_{\text{min}} = \min(\lambda_i, 1 \leq i \leq m) \).

Proof. We first summarize Algorithm 1 in a centralized manner: first, the PMs \(P = \{p_1, p_2, \ldots, p_m\} \) are ranked in increasing order of their cost-capacity ratio \(\lambda/c \), i.e., \(\lambda_1/c \leq \lambda_2/c \leq \ldots \leq \lambda_m/c \) and the VMs \(\Theta = \{\theta_1, \theta_2, \ldots, \theta_n\} \) are ranked in decreasing order of their size, i.e., \(r_1 \geq r_2 \geq \ldots \geq r_n \). Then, we allocate the VMs to PMs by a greedy method. This centralized greedy method works as follows: select the first PM \(p_1 \) that has the minimum cost-capacity ratio and fill \(p_1 \) with VMs one by one in order of these VMs’ rank. If at a certain step, a VM \(\theta_i \) cannot be allocated to \(p_1 \) due to its capacity constraint, the successive VM \(\theta_j (y > x) \) that has a smaller size is considered. This process of filling \(p_1 \) with VMs continues until either \(p_1 \) has been fully utilized or no unallocated VMs that can be allocated to \(p_1 \). After the allocation of VMs to \(p_1 \) finishes, a similar process of allocating VMs to \(p_2 \) is repeated. This greedy procedure proceeds until all VMs have been allocated.

Now, we will present the approximation ratio of Algorithm 1. On the one hand, from the perspective of the optimal solution, in the best case, the optimal solution will only use the first \(k \) PMs with the minimal cost-capacity ratios, i.e.,

\[
k_i = \min\{j \in [1, \ldots, m]; \sum_{i=0}^{j} g_i \geq R\}
\]

where \(R \) is the sum of resources required by all VMs, i.e., \(R = \sum_{i \in \Theta} r_i \).

On the other hand, from the perspective of Algorithm 1, assume that Algorithm 1 uses the first \(k \) PMs to host
system VMs. For these k PMs, denoted by l, the VM loads on p_i (i.e., $l=\sum_{l=1}^{k} \theta_l p_l$, $1 \leq i \leq k$) and w_i the residual capacity of p_i (i.e., $w_i=\theta_i l_i$, $1 \leq i \leq k$). In Algorithm 1, the next PM is selected to host VMs if and only if the previous PM cannot host any VM. Then, we have

$$w_i < \theta_i l_i, \forall 1 \leq i \leq k$$

Next, we divide the proof into two cases according to whether the kth PM in the optimal solution is fully utilized or not.

Case 1: the kth PM is fully utilized. In this case, for Algorithm 1, the VMs that have not been allocated to the first k PMs should be allocated to the successive $(k-k)$ PMs (i.e., $[p_{k+1}, \ldots, p_z]$), indicating that

$$\sum_{i=1}^{z} x_{i} = \sum_{i=1}^{k} x_{i}$$

Case 2: the kth PM is not fully utilized. In this case, Let $\mu(Opt)$ and $\mu(A1)$ denote the VM loads on the kth PM in the optimal solution and Algorithm 1, respectively. Then, we can derive that

$$\sum_{i=1}^{z} w_i > \sum_{i=1}^{k} w_i + \mu(Opt) - \mu(A1) = \sum_{i=1}^{k} x_{i}$$

Combing inequalities (7) and (8), we can derive that

$$\sum_{i=1}^{z} w_i \geq \sum_{i=1}^{k} x_{i}$$

Combing inequalities (6) and (9) and Proposition 1, we can determine that the additional number of used PMs in Algorithm 1 (i.e., $k-k$) is less than the number of PMs used in the optimal solution (i.e., k), that is $k-k<k$. Up to this point, we can determine that the approximation ratio of Algorithm 1 is

$$S(A1) = \frac{\text{OPT}(A1, P)}{\text{OPT}(\Theta, P)}$$

$$\leq 1 + \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$$

Therefore, we have Theorem 1.

In addition to analyzing the approximation ratio of Algorithm 1, in cloud computing systems, the efficiency of the distributed algorithm should also be evaluated in terms of computation and communication complexities.

Computation and communication complexities of the distributed auction-based VM allocation algorithm (i.e., Algorithm 1). Recall that in Algorithm 1, exactly one VM is allocated at each auction round. Therefore, n auction rounds are needed to allocate all n VMs, where n is the number of VMs. At each round, each agent takes $O(n)$ operations to compute the best bid (Step 3). In step 5, for each agent, $m-1$ bid messages need to be sent to all other agents, where m is the number of PMs. Next, in step 7, each agent takes $O(n)$ computations to select the optimal bid with the minimal cost-capacity ratio. For each of the m agents, it needs to send a winner acknowledgement to the winner agent. Finally, in step 8, the winner agent needs to send $m-1$ messages to all other agents to inform them that the target VM it bids for has been allocated. Therefore, the total computation of Algorithm 1 is $O(n(n(m+1)-m-1)+m)$. Notice that both of the bid and acknowledgement messages contain at most two real numbers, which can be coded by 8 bytes. Hence, Algorithm 1 consumes little network bandwidth.

4.2 Negotiation-Based VM Consolidation

4.2.1 The Reason for Negotiation-Based VM

Consolidation

Although the auction-based VM allocation mechanism has several desirable properties, there are two deficiencies that can be further improved. In the following, we use two illustrative examples to highlight the advantages of the negotiation-based VM consolidation mechanism in addressing these two deficiencies.

The first deficiency is that the auction-based VM allocation does not always achieve the optimal solution. Consider, for example (Example 1), the simple VM allocation problem presented in Fig. 3. In Fig. 3(a), there is a cloud system consisting of three interconnected PMs p_1, p_2, and p_3, where p_1 and p_2 communicate directly and p_2 and p_3 can communicate directly. These PMs are denoted by p_{14}, p_{12}, and p_{16}, respectively, where the first value denotes the capacity and the second function denotes the energy cost model (for convenience, here we assume $\alpha=0$, $\forall 1 \leq i \leq 3$) and u_i is p_i’s resource utilization. Now assume that there are four newly submitted VMs $\{\theta_1, \theta_2, \theta_3, \theta_4\}$ and their required resources are $r_1=6$, $r_2=6$, $r_3=9$ and $r_4=5$, respectively (Fig. 3(b)). By the auction-based VM allocation mechanism, VM θ_1 is allocated to PM p_1, θ_2 is allocated to p_2, and θ_3 and θ_4 are allocated to p_3. This allocation $\{\theta_1, \theta_2, \theta_3, \theta_4\}$ can be achieved from the auction-based allocation $\{\theta_1, \theta_4, \theta_3, \theta_2\}$ by migrating θ_4 from p_2 to p_1, θ_3 from p_3 to p_2, and θ_4 from p_2 to p_3: simultaneously, which only produces $42+11+4+6=59.5$ units energy cost (Fig. 3(c)). The optimal allocation $\{\theta_1, \theta_2, \theta_3, \theta_4\}$ can be achieved from the auction-based allocation $\{\theta_1, \theta_2, \theta_3, \theta_4\}$ by migrating θ_4 from p_2 to p_1, θ_3 from p_2 to p_1, and θ_4 from p_2 to p_3; simultaneously, which only produces $42+9+12+6+8+5=43$ units energy cost (Fig. 3(d)). This migration process can be achieved easily by two sequential VM exchange: the exchange of θ_3 and θ_2 between PMs p_1 and p_2; and the exchange of θ_1 and θ_4 between p_1 and p_3.

The second deficiency is that this static auction-based VM allocation cannot adapt to system dynamics where VMs arrive and depart the system dynamically. For example (Example 1 continued), at a certain time-slot of the optimal allocation in Example 1, the application of θ_4 at PM p_4 has been satisfied and departs the system, where the system energy cost becomes $42+9+12+6+8+5=43$ (Fig. 3(e)). In this case, to re-optimize the allocation of VMs for energy reduction, it is natural to invoke Algorithm 1 again by reallocating all system VMs. This method, however, might generate a tremendous VM migration cost because it does not consider the current VM allocation. Now, consider three simple VM transfers among PMs p_1, p_2, and p_3 by migrating θ_4 from p_3 to p_2, θ_3 from p_2 to p_1, and θ_4 from p_2 to p_3. These VM consolidations reduce the energy cost to...
42×(5/14)+6×(9/12)+16×(6/8)=31.5 (Fig. 3(f)). Therefore, it is very necessary to devise a negotiation-based VM consolidation mechanism by allowing agents to exchange their assigned VMs to save energy cost and address system dynamics.

4.2.2 A Local Negotiation-Based VM Consolidation Mechanism

With the increasing development of virtualization technology, on one hand, VM live migration has been verified as effective in reducing energy consumption in cloud systems [20]. On the other hand, VM live migration may have a negative effect on system performance such as increasing network delay [41]. To reduce system energy cost and avoid incurring prohibitive migration overhead, we propose a local VM consolidation mechanism by allowing a VM to migrate from one agent to another agent that within the same negation domain.

Definition 3. Negotiation Domain. The negotiation domain of each agent \(a \) is defined as \(D=\{a|d(a,a)<\rho p\} \), where \(\rho p \) is the predetermined negotiation radius parameter, meaning that \(a \) can only negotiate with agents within the limited communication distance \(\rho \).

Throughout this paper, we refer to any pair of agents are negotiable if these two agents are within the same negotiation domain. Now we are ready to formalize the local negotiation-based VM consolidation mechanism. With respect to negotiation, we mean that the agents make contracts on exchanging their assigned VMs. According to the number of agents involved in the contract, we can classify the contracts into two main families [58]:

- **Swap Contract**, where only two agents are involved by allowing the first agent to transfer a set of VMs to the second agent and the second agent to transfer another set of VMs to the first agent in return (Section 4.2.2.1).

- **Cluster Contract**, where a cluster of agents (more than two) are involved by allowing the VMs to be transferred among multiple agents within the negotiation domain (Section 4.2.2.2).

4.2.2.1 Swap Contract

By referring to the related definitions presented in [47], we first define single VM out and in contract.

Definition 4. Out and In Contract. Given an agent \(a \in A \), an out contract \(\text{out}(a_i,b_i) \) is defined as a single VM migration that transfers VMs \(\theta_i \in \Theta(a) \) from \(a_i \) to another agent \(a \) and an in contract \(\text{in}(a,b_ia) \) is defined as a single VM migration that transfers VMs \(\theta_i \in \Theta(a) \) from \(a_i \) to \(a \).

Definition 5. Swap Contract. A swap contract \(\text{sc}(a_i,\theta_i,\alpha_j,\theta_j) \) is defined as a union of multiple out and in contracts between \(a \) and \(a_i \), i.e.,

\[
\text{sc}(\theta_i,\alpha_j,\theta_j)=\bigcup_{\theta_i \in \Theta_i} \text{out}(\theta_i,\alpha_j,\theta_j) \bigcup_{\theta_j \in \Theta_j} \text{in}(\theta_i,\alpha_j,\theta_j)
\]

where \(\Theta_i \) (resp. \(\Theta_j \)) represents the set of VMs that agent \(a_i \) (resp. \(a \)) migrates to agent \(a_j \) (resp. \(a \)).

A swap contract is feasible if and only if it satisfies the capacity constraint, i.e., after executing the VM swap contract \(\text{sc}(\theta_i,\alpha_j,\theta_j) \), the VM loads of agents \(a_i \) and \(a_j \) do not exceed their own capacities. Throughout the paper, all contracts are assumed feasible unless noted specifically.

Definition 6. Swap Path. A swap path \(SP \) is a set of feasible swap contracts that changes a VM allocation \(\Theta(a) \) to another VM allocation \(\Theta'(a) \).

Fig. 4 shows the VM swap graph of Example 1, where each agent’s negotiation domain is constrained within its direct neighbors, i.e., \(\rho=1 \). In Example 1, we can observe that for any allocation, a swap path exists that can lead to the optimal allocation \(\{3,1,2,4\} \). Therefore, we conjecture that the local swap contract has a very inspiring advantage in reducing energy cost, shown in Theorem 2. Before presenting Theorem 2, we first show an interesting property of the local swap contract, which is helpful in proving Theorem 2.

Proposition 2. Assume that there are \(m \) VMs \(\{\theta_1,\theta_2,\ldots,\theta_m\} \) and \(m \) VMs \(\{\theta_1,\theta_2,\ldots,\theta_m\} \). Initially, the VM \(\theta_i \) is allocated to PM \(p_i \), i.e., the initial allocation \(\psi=[\theta_1,\theta_2,\ldots,\theta_m] \) is feasible. If there exists a feasible cyclic swap path \(SP=[\theta_1,\theta_2,\theta_3,\ldots,\theta_m,\theta_1] \) then we can derive that at allocation \(\psi \), there exists at least one swap contract \(\text{sc}([a_i,\theta_i],[a_j,\theta_j]) \) between \(a_i \) and \(a_j \) for exchanging their assigned VMs \(\theta_i \) and \(\theta_j \).

Proof. Because the initial allocation \(\psi \) is feasible, we have that each PM \(p_i \)’s capacity \(c \) is greater than their assigned VM \(\theta_i \), i.e., \(c \geq r_i \), \(1 \leq i \leq m \). Furthermore, because the cyclic swap path \(SP \) is feasible, we also have that \(c_{i+r} \leq r_i \), \(1 \leq i \leq m \).

Using reducible ad absurdum, we assume that for any pair of agents \(a_i \) and \(a_j \), it is not feasible for them to change their assigned VMs, i.e.,

\[
\begin{align*}
(c_i-c_j)(c_i-r_i) &< 0 \\
(c_i-r_i)(c_j-r_i) &< 0 \\
&\vdots \\
(c_i-c_j)(c_j-r_i) &< 0
\end{align*}
\]

On one hand, from \((c_{i+r_i}+c_{i+r_i})<0 \) and \(c_{i+r_i} \leq r_i \), we can derive that \(c_{i+r_i} < r_i \), \(1 \leq i \leq m \). Consider the fact that \(c_{i+r_i} \leq r_i \), \(1 \leq i \leq m \), we have that \(c < c_{i+r_i} \). On the other hand, from \((c_{i+r_i}+c_{i+r_i})<0 \) and \(c_{i+r_i} \), we can derive that \(c < c_{i+r_i} \), which is contradictory to the conclusion of \(c < c_{i+r_i} \). Therefore, assumption (11) does not hold and we have this proposition.

Proposition 3. Assume a VM allocation problem where global communication is permitted (i.e., any pair of PMs can communicate with each other). Given a non-optimal allocation \(\psi(\Theta(a)) \), there does not have any feasible swap contract among any pair of agents, then there does not exist a swap path \(SP \) that can change \(\psi \) to another feasible allocation.

Proof. According to the proposition suppose, we have that at this allocation \(\psi \), for any pair of agents \(a_i \) and \(a_j \) for any VM set \(\text{sc}(\theta_i) \) on \(a_i \) and any PM set \(\text{sc}(\theta_j) \) on \(a_j \), the exchange of \(S_i \) and \(S_j \) is not feasible, i.e., \(\forall S_i \subseteq \Theta(a_i), S_j \subseteq \Theta(a_j) \):

\[
\sum(c_j-r_j)\sum(\text{sc}(\theta_i)\text{sc}(\theta_j))<0
\]
Using reductio ad absurdum, suppose that there exists a swap path $SP=\{a,b,a_i,a_2,\ldots,a_n\}$ that can change ψ to another feasible allocation ψ'. For the swap contracts along the swap path SP, we conjecture that any agent $a_i \in A$ (if A indicates the agents involved in the swap path SP), involves at least one pair of out and in swaps (Conclusion 1). We prove this conclusion as follows: on the one hand, for the agent $a \in A$, that only has out swaps, we can delete a's out swaps to allocate other agents' VM loads. On the other hand, for the agent $a \in A$, that only has in swaps, which indicates that there is a feasible in swap that other involved agent $a_j \in A$ can transfer some VMs to a. However, assumption (12) indicates this kind of in swap does not exist. Based on Conclusion 1, we can further derive that there exists at least one cyclic swap path CSP within SP, i.e., $CSP=SP$ (Conclusion 2). We can construct such CSP as follows: start from any involved agent $a_i \in A$ and add its out swap $out(a_i,\theta_i,a_i)$ to CSP. Then, we proceed to the out swap's (i.e., $out(a_i,\theta_i,a_i)$) destination agent a_j and add a_j's out swap $out(a_j,\theta_j,a_j)$ to CSP. If the destination agent a_j of the swap out has emerged in CSP, then this cyclic swap path CSP is identified. Otherwise, proceed to deal with the destination agent a_j of the swap out with the same procedure. Combining Conclusion 2 and Proposition 2, we can finally determine that there exist at least one swap contract between any involved agents $a_i \in A$ and $a_j \in A$, which contradicts assumption (12).

Theorem 2. Given a VM allocation problem where global communication is permitted, then for any non-optimal allocation $\Theta(a)_{i,j},\Theta(a)$, there always exists a swap path that changes $\Theta(a)_{i,j},\Theta(a)$ to the optimal allocation $\Theta(a)_{i,j},\Theta(a)$ with the minimum energy cost.

Proof. To derive this theorem, we only need to prove that the case that for any non-optimal allocation $\Theta(a)_{i,j},\Theta(a)$, there exists a swap contract that can change $\Theta(a)_{i,j},\Theta(a)$ to another feasible allocation $\Theta(a)_{i,j},\Theta(a)$. By contradiction, Assume that there exists a non-optimal allocation $\Theta(a)_{i,j},\Theta(a)$ that does not have any feasible swap contract among any pair of agents. For this allocation ψ, Proposition 3 indicates that there does exist a swap path SP that can change ψ to another feasible allocation, which means that $\Theta(a)_{i,j},\Theta(a)$ is the only feasible allocation as well as the optimal allocation. Thus, for any non-optimal allocation $\Theta(a)_{i,j},\Theta(a)$, there exists at least one swap contract that can change $\Theta(a)_{i,j},\Theta(a)$ to another feasible allocation $\Theta(a)_{i,j},\Theta(a)$ and, thus, it can achieve the optimal allocation along certain swap path.

Theorem 2 suggests that theoretically, if global communication is allowed, the local swap contract is sufficiently effective to optimize system performance in reducing energy cost. However, in addition to feasibility satisfaction, the swap contract should also have the monotonicity property, that is, each VM swap contract should reduce energy cost. Why is monotonicity important? The cloud system might be halted arbitrarily due to system maintenance and non-monotonic VM consolidation mechanisms risk being terminated at highly inefficient allocation that consumes a large amount of energy.

Definition 7. Benefit of Swap Contract. Let $\Theta(a), \Theta(a)$ be the VMs assigned on agents a and a, and $\Theta(a), \Theta(a)$ be their VM loads after executing the VM swap contract $sc=<a_i,\theta_i,a_j,\theta_j>$, where $\Theta(a)=\Theta(a)\backslash \Theta(a)$ and $\Theta(a)=\Theta(a)\backslash \Theta(a)$. The benefit gained by the swap contract $sc()$ is defined as the difference of energy costs between Θ and $\Theta, i.e.,$ $B(a_i,\theta_i,a_j,\theta_j,\Theta)=e(u_i)+e(u_i)-e(u_i)-e(u_j)$ (13) where u_i (resp. u_i) and u_j (resp. u_j) are the resource utilizations of a (resp. a) before and after the swap contract sc.

A swap contract sc is profitable if and only if it yields a positive benefit (i.e., $B(sc)>0$). The system energy cost of the allocation after executing a profitable swap contract sc is equal to the system energy cost of the allocation before executing swap sc minus the benefit of sc. Similarly, a swap path is profitable if and only if all of the swaps along the path are profitable.

Next, we will present the profitable swap contract between any pair of negotiable agents. For any pair of negotiable agents a_i and a_j with VM loads $\Theta(a_i)$ and $\Theta(a_j)$, to find the optimal swap with the maximum benefit, one needs to consider $2^{(2^{(2^{(2^{(2^n)})})})}$ VM exchange combinations ($1 \times I$ indicates the number of elements in set X). To address this computationally costly optimal problem, we propose a polynomial algorithm for a_i to make a profitable swap contract with a_j shown in Algorithm 2. In Algorithm 2, a_i first sorts its own VMs $\Theta(a_i)$ in decreasing order by their size and ranks a_j's VMs $\Theta(a_j)$ in increasing order by their size (Steps 1-2). Then, in Steps 3-11, a_i attempts to exchange its VMs in order of these VMs' ranking with a_j's VMs in order of a_i's VMs' ranking. The motivation of this idea is that each agent prefers to migrate out its resource-consuming VMs to other agents in exchange for resource-saving VMs to reduce its own energy consumption. For each out VM set $\Theta_i \cup \Theta_j$ (1≤ i≤ m) and initially $\Theta_i=\emptyset$, a_i identifies the profitable VM in set Θ_i from a_j as follows: a) first constructs a set S including all VM combinations on a_j from Θ_i to Θ_j (yields $S=\Theta_i \cup \Theta_j$). Agent a_i then selects the most profitable VM set $\cup \Theta_j \cup \Theta_i$ from S that yields the maximum benefit $B(a_i,\Theta_i \cup \Theta_j \cup \Theta_i,\Theta_j)$. If this VM swap contract $sc(a_i,\Theta_i \cup \Theta_j \cup \Theta_i,\Theta_j)$ has a greater benefit than the previous swap contract with benefit b, a_i then updates the out $\Theta_i \cup \Theta_j \cup \Theta_i; \Theta_j$ and updates the in VMs, $\Theta_i \cup \Theta_j \cup \Theta_i$ (Steps 7-8).

After presenting the swap contract between any pair of agents, another question arises: given the agent a_i, which negotiable agent $a_j \in D$ should a_i negotiate with that can make a profitable swap contract? And if there are multiple profitable swap contracts, which should a_i choose to execute? To answer these questions, we propose Algorithm 3 for each agent a_i to make the most profitable swap contracts with its negotiable agents D. In Algorithm 3, before negotiation, a_i first initializes its state: the sets out and in store the VMs that are migrated out from a_i and the VMs that are migrated in to a_i, respectively. The variable target indicates the target agent that a_i would migrate VMs to (Step 1). In Step 2, a_i only negotiates with the agent $a_j \in D_i$ that has a smaller cost-capacity ratio than that of a_i. The motivation of this idea is that, compared with the agent that has the smaller cost-capacity ratio, the agent that has the greater cost-capacity ratio has more urgency to move its VMs out to reduce its own energy cost. For each negotiable agent $a_j \in D_i$, a_i computes the profitable VM swap $<a_i,\Theta_i \cup \Theta_j,\Theta_j>$ (i.e., a_i migrates VMs Θ_i, to a_j and a_i migrates VMs $\Theta_j\cup \Theta_i$ to a_i (Step 4). The profitable swap computation adopted by the agents to identify the profitable VM exchange is described in Algorithm 2. If the current swap contract $sc(a_i,\Theta_i \cup \Theta_j,\Theta_j)$ committed with agent a_i yields a greater benefit than the benefit b of the previous
Algorithm 2. Compute Profitable Swap \((a_i, \Theta_{a_i}, a_j, \Theta_{a_j})\)
% \(a_i\) is the agent where swap contract is implemented; \(a_j\) is the agent that \(a_i\) is negotiating with; \(\Theta_{a_i}\) is the VMs that \(a_i\) migrates to; \(\Theta_{a_j}\) is the VMs that \(a_j\) migrates to.\(a_i\)
1. Sort the VMs \(\Theta(a_i)\) in decreasing order by the amount of their required resources.
2. Sort the VMs \(\Theta(a_j)\) in increasing order by the amount of their required resources.
3. Set \(b=0\).
4. for \(1 \leq i \leq |\Theta(a_i)|\) do
5. \(b=b(A_i, \Theta(a_i) \cup \Theta(a_j), \Theta(a_j))\).
6. for \(1 \leq j \leq |\Theta(a_j)|\) do
7. if \(b(A_j, \Theta(a_i) \cup \Theta(a_j), \Theta(a_j)) > b_i\) do
8. \(\Theta_{a_i} = \Theta_{a_i} \cup \Theta(a_j), \Theta_{a_j} = \Theta(a_i) \cup \Theta(a_j)\).
9. end if
10. end for
11. end for

contract with other negotiable agent, \(a_j\) prefers to make a new swap contract with \(a_i\) (Steps 5–7).

Computation and communication complexities of swap contract algorithm (i.e., Algorithm 3). In Algorithm 3, the agent \(a_i\) needs to negotiate with all of its local domain agents \(D_i\) to find the most profitable swap contract. Given a local domain agent \(a_i \in D_i\), \(a_i\) utilizes Algorithm 2 to compute the profitable VM swaps between \(a_i\) and \(a_j\). In Algorithm 2, \(a_i\) first takes \(O(2logn)\) time to sort the VMs on \(a_i\) in decreasing order of their size and the VMs on \(a_j\) in increasing order of their size (Step 1–2 of Algorithm 2). Then, \(a_i\) takes \(O(n^2)\) time to consider the \(n^2\) combinations of VM swap to find the most profitable swaps between \(a_i\) and \(a_j\) (Step 4–11 of Algorithm 2). Therefore, Algorithm 3 takes total \(O(K(2logn+n^2))\) or \(O(Kn^2)\) computations to return the final VM swaps with its certain domain agent, where \(K\) is the average degree of each PM and \(\rho\) is agent \(a_i\)'s negotiation radius, i.e., \(|D_i| = K \leq n\) (\(m\) is the number of PMs). Moreover, agent \(a_i\) needs to communicate with \(D_i\) for one time to acquire their VM load information, generating \(O(K)\) communication cost.

Next, we will illustrate how the swap contract-based negotiation mechanism addresses the inefficient allocation problems emerged in Example 1 and Example 1 continued. In Example 1, the optimal allocation \([5,6,7]\) can be achieved by two sequential profitable swaps, i.e., \((a_1, \{a_1, a_2, a_3\}, \Theta_{a_1})\) and \((a_2, \{a_2, a_3\}, \Theta_{a_2})\). In Example 1 continued, we can achieve the optimal allocation \([4,3,2]\) by executing two sequential profitable swaps, i.e., \((a_1, \{a_1, a_2, a_3\}, \Theta_{a_1})\) and \((a_2, \{a_2, a_3\}, \Theta_{a_2})\), here we assume the negotiation radius \(\rho=2\). Although this swap contract mechanism is necessary to reduce energy cost, it is not sufficient to lead the system optimal with the minimum energy cost even though global communication is permitted.

Proposition 4. Given a VM allocation problem, even though global communication is permitted, there does not always exist a profitable swap path that can lead certain allocation \(\{\Theta(a_i)\}\) to the optimal allocation \(\{\Theta(a_j)\}\).

Proof. We achieve this conclusion by a concrete example. Fig. 5 shows a VM allocation example with four VMs \(\{\theta_1=7, \theta_2=7, \theta_3=8, \theta_4=5\}\) running in a cloud system (this cloud system is just the one described in Example 1). Assume that the initial VM allocation is \([5,6,7,8]\), \(\theta_i\) and \(\theta_j\) are placed on \(p_i, \theta_i\) is placed on \(p_2, \theta_j\) is placed on \(p_3\) (Fig. 5(a)). Fig. 5(b) depicts the profitable swap graph of this problem instance, where global communication is permitted. From Fig. 5(b), we observe that for the allocation \([5,6,7,8]\), no profitable swap path can lead \([5,6,7,8]\) to the optimal allocation \([5,6,8,7]\). However, this optimal allocation can be achieved by multiple VM migrations among a cluster of agents \(a_1, a_2,\) and \(a_3\), i.e., \(a_i\) migrates \(\theta_i\) to \(a_1, a_2\) migrates \(\theta_i\) to \(a_2,\) and \(a_3\) migrates \(\theta_i\) to \(a_3\) (Fig. 5(c)).

4.2.2.2 Cluster Contract
As discussed above, there are VM allocation problems where no profitable path of swap contract can lead certain allocation to the optimal allocation. In this section, we propose a complementary local cluster contract mechanism to address the inefficiencies of the swap contract mechanism in reducing energy cost, where VMs can be transferred among a cluster of agents.

Definition 8. \(k\)-Cluster Contract. Given an agent \(a_i \in A, a\) is a \(k\)-cluster contract \(cc^k\) \((k \geq 2)\) is a combination of \(k\) out and \(m\) in contracts between \(a\) and its negotiable agents \(D_i\), i.e., \(cc^k = \bigcup_{a_i, \{a_i, a_{i+1}, \ldots, a_{i+k}\}}\) (\(a_i, \theta_i, \Theta_{a_i} \cup \Theta_{a_{i+1}} \cup \ldots \cup \Theta_{a_{i+k}}\)) \(\cup \bigcup_{a_j, \{a_j, a_{j+1}, \ldots, a_{j+k}\}}\) (\(a_j, \theta_j, \Theta_{a_j} \cup \Theta_{a_{j+1}} \cup \ldots \cup \Theta_{a_{j+k}}\)) \((14)\)

Denoted by \(A(cc^k)\) the set of agents involved in the \(k\)-cluster contract \(cc^k\). Similar to the swap contract benefit definition, the benefit of a \(k\)-cluster contract \(cc^k, B(cc^k)\) is also defined as the difference of energy costs of all contracted agents \(A(cc^k)\) before and after executing the \(k\)-cluster contract \(cc^k\), i.e.,

\[B(cc^k) = \sum_{a_i \in A(cc^k)} (e_i(a_i) - e_i(a_i)) \tag{15} \]
Algorithm 4. Cluster Contract (CC) \((a_i, K) \)

\(i \) is the agent where CC is implemented; \(K \) is the predetermined value constraining the scale of the cluster contract \(i \).

1. Initialize \(M = 0 \).
2. Build \(a_i \)’s out contracts to its negotiable agents \(D_i \):

 \[
 \text{Out}(a_i, D_i) = \bigcup_{a_j \in (a_i, \theta_s, a_j)} \text{Out}(a_i, \theta_s, a_j),
 \]

 and \(a_i \)’s in contracts from its negotiable agents \(D_i \):

 \[
 \text{In}(a_i, D_i) = \bigcup_{a_j \in (a_i, \theta_s, a_j)} \text{In}(a_i, \theta_s, a_j).
 \]
3. for \(2 \leq k \leq K \)
4. Identify and add all \(k \)-cluster contracts \(cc_i^k \) from \(\text{Out}(a_i, D_i) \cup \text{In}(a_i, D_i) \) to \(M \).
5. end for
6. Select the most profitable \(k \)-cluster contracts \(cc_i^k \) from \(M \), i.e.,

 \[
 cc_i^k = \arg\max_{cc_i^k \in M} B(cc_i^k).
 \]

where \(e(u_i) \) and \(e(u_i) \) represent the energy costs of the contracted agents \(u_i \in \text{Out}(cc_i^k) \) before and after the \(k \)-cluster contract \(cc_i^k \), respectively.

Next, we will present the cluster contract formally, shown in Algorithm 4. In Algorithm 4, before computing the cluster contract, the agent \(a_i \) first predetermines the scale \(K \) of the cluster contract, indicating that there are at least \(K \) VMs involved in the cluster contract. Then in Step 1, \(a_i \) initializes \(K \)-cluster contract \((k \leq K) \) set \(M \). In Step 2, \(a_i \) constructs all of its \(out \) contracts to its negotiable agents \(D_i \),

\[
\text{Out}(a_i, D_i) = \bigcup_{a_j \in (a_i, \theta_s, a_j)} \text{Out}(a_i, \theta_s, a_j)
\]

and all of its \(in \) contracts from \(D_i \):

\[
\text{In}(a_i, D_i) = \bigcup_{a_j \in (a_i, \theta_s, a_j)} \text{In}(a_i, \theta_s, a_j).
\]

After constructing all single \(out \) and \(in \) contracts \(\text{Out}(a_i, D_i) \cup \text{In}(a_i, D_i) \), \(a_i \) identifies and adds all \(k \)-cluster contracts \((k \leq K) \) (which can be implemented by the brute-force search approach) to \(M \) (Steps 3–5). Finally, \(a_i \) selects the optimal \(k \)-cluster contract \(cc_i^k \) from \(M \) that has the maximal benefit.

Computation and communication complexities of cluster contract algorithm (i.e., Algorithm 4). In algorithm 4, each agent needs to find all \(k \)-cluster \((k \leq K) \) contracts among the union of all \(out \) and \(in \) contracts \(\text{Out}(a_i, D_i) \cup \text{In}(a_i, D_i) \). The number of feasible single \(out \) and \(in \) contracts \(|\text{Out}(a_i, D_i) \cup \text{In}(a_i, D_i)| \leq n \), because each VM can only be involved in only one \(out \) or \(in \) contracts, where \(n \) is the number of VMs. Therefore, the computation of Algorithm 4 is

\[
\sum_{m=2}^{K} \binom{n}{k} = O(n^m)
\]

where \(K \) is the maximum number of transferred VMs. On the other hand, in the cluster contract, each agent \(a_i \) only needs to communicate with its negotiable agents \(D_i \) to acquire their VM load information. This type of information has been collected in the swap contract process. Therefore, the cluster contract does not incur extra communication cost.

4.2.3 Algorithm of Negotiation-Based Consolidation

In this section, we formally present the negotiation-based VM consolidation (NC) algorithm by integrating the swap and cluster contracts, shown as follows.

1) Each agent \(a_i \in A \) invokes Algorithm 3 and Algorithm 4 to compute the swap contract \(SC(a_i) \) and cluster contract \(CC(a_i, K) \), respectively. If the swap contract has a greater benefit than the cluster contract, i.e., \(B(SC(a_i)) > B(CC(a_i, K)) \), then \(a_i \) sends the swap contract request \(\langle a_i, \Theta_{ij}, a_j, \Theta_{ji}, B(SC(a_i), SC) \rangle \) to the target contracted agent \(a_j \), where \(SC \) indicates the contract type (i.e., swap contract). Otherwise, i.e., \(B(SC(a_i)) < B(CC(a_i, K)) \), \(a_i \) sends the cluster contract request \(\langle a_i, ccc_{i}^k, B(ccc_{i}^k), CC \rangle \) to all involved agents \(A(ccc_{i}^k) \) in cluster contract \(ccc_{i}^k \), and \(CC \) indicates the cluster contract type.

2) Each agent \(a_j \) stores all contract requests and sends an acknowledge message \(\langle Ack \rangle \) to the winner agent whose contract request has the maximum benefit.

3) The agent \(a_i \) that receives acknowledgments from all of the contracted agents, executes the contract by exchanging VMs with its contracted agents.

The NC repeats the above Steps 1–3 until there is no agent that can benefit by negotiating with other agents for VM migration. In NC, each VM migration operation is profitable to reduce energy cost, therefore NC has monotonicity. Furthermore, let \(E(ini) \) and \(E(opt) \) be the energy costs of the initial and optimal VM allocation, respectively, then NC can reach the optimal allocation in at most \((E(ini) - E(opt)) / B \) steps. \(B \) is the average benefit of all of the VM migration operations, indicating that NC is also convergent.

5 SIMULATION VALIDATION AND ANALYSES

We validate the advantages of the proposed multiagent (MA)-based resource allocation approach in two series of experimental settings: 1) a static setting, where we are only concerned with allocating a set of VMs to PMs (Section 5.1) and 2) a dynamic setting, where VMs arrive and depart the cloud systems dynamically (Section 5.2).

5.1 Validate the Advantage of the MA approach in a Static Setting

A. Experiment Setup

In the static experiment setting, each cloud system consists of 128 PMs. Three typical network architectures are used to simulate the underlying topology of these PMs, shown as follows:

- **Tree Network** [59]. The 128 PMs first are randomly classified into 16 clusters, each with 8 PMs. PMs that belong to the same cluster of 8 (i.e., 1–8, 9–16, etc.) can communicate with each other by a single switch, i.e., with one-hop communication distance. PMs that belong to the same cluster of 16 (1–16, 17–32, etc.) but that are not in the same cluster of 8, can communicate by 3 switches. Analogously, PMs that belong to the same cluster of 32, but not the cluster of 16 have 5-hop communication distances. The PMs that belong to the same cluster of 64 (but that are not in the cluster of 32) must communicate through 7 switches. Finally, PMs that belong to the cluster of 128 (but that are not in the cluster of 64) have 9-hop communication distances.

- **BCube Network** [60][61]. BCube is a 7-level network structure that can be constructed recursively. At level 0, BCube consists of 2 PMs that can communicate via only one switch. Recursively, a BCube-1 (5 × 5 × 5) level is constructed from 2 BCubes-1 levels interconnected by 20 2-port switches connecting each PM in the former

BCubes: to another PM in the latter BCubes. Each PM in a BCube can be denoted by its address array \(a_{BCube} \) \((a \in \{0,1\}, 0 \leq k \leq 6) \). For example, if a PM connects the left port of the switch in the BCube level and connects the right port of the switches in the BCube level, then its address array is 0000001. To compute the communication distance among PMs, we first assign each of the 128 PMs a 7-bit binary address, for example, PM \(p_0 \) and \(p_8 \) can be addressed as 0000000 and 1111111, respectively. Then, the communication cost between any two PMs \(p_i \) and \(p_j \) can be defined as:

\[
d(p_i,p_j) = \text{hamdist}(\text{address}(i), \text{address}(j))
\]

where the function \(\text{hamdist}(\text{address}(i), \text{address}(j)) \) is the hamming distance between the two strings \(\text{address}(i) \) and \(\text{address}(j) \), which is computed as the number of positions at which the corresponding symbols are different between \(\text{address}(i) \) and \(\text{address}(j) \), e.g., \(\text{hamdist}(110001,1100110)=4 \).

- **Lattice-Like Network** [48]. Each PM \(p_i \) connects with its local 1 PMs \(\{(m-i/2)\%m, \ldots, (m+i-1)\%m, (m+i+1)\%m, \ldots, (m+i/2)\%m\} \), where \(m \) is the number of PMs, \(l \) is the degree of each PM (here we set \(l=8 \)), and \(a\%b \) returns the remainder of \(a/b \).

After constructing the network of the cloud systems, we next set the configurations of the PMs. For each PM \(p_i \), its capacity \(c_i \) distributes in the range [10, 30] randomly, its maximum energy consuming \(\lambda_i \) is selected in (0, 10] randomly, and the idle energy consuming ratio \(a_i \) is selected from [0, 1] uniformly. In this static setting, each experiment has 200 VMs to be satisfied, and each VM’s resource requirement distributes in the interval [1, 10] randomly.

B. Approaches

In the static setting, we compare our MA-based distributed approach2 with three typical centralized static resource allocation approaches:

- **Multiagent-Based Approach (MA)**. This approach is proposed by us. We denote MA-1 and MA-2 as the MA approaches with negotiation radius \(\rho = 1 \) and \(\rho = 2 \), respectively.

- **Lower Bound of the Optimal Solution LB-OPT** [21]. The lower bound of the integer programming resource allocation problem defined in Definition 1 is the optimal value of the relaxed liner programing problem where the VM can be allocated on PM fractionally. In this relaxed formulation, we first sort all the PMs in increasing order of their cost-capacity ratio, i.e., \(c_i/\lambda_i \leq c_j/\lambda_j, \ldots \leq c_m/\lambda_m \) and denote \(k \) as the minimal number of PMs that can be used to host all system VMs, i.e.,

\[
k = \min\{j \in \{1, \ldots, m\} : \Sigma_{i=1}^j c_i \geq R\}
\]

where \(R \) represents the sum of resources required by all VMs, i.e., \(R = \Sigma_{j \in \Omega} r_j \), then the lower bound of the integer programming resource allocation problem is:

\[
OPT_{LB} \leq \sum_{i=1}^{k-1} \lambda_i + \left(R - \sum_{i=1}^{k-1} c_i \right) \lambda_k
\]

- **Bin Packing-Based Best Fit Decreasing Approach (BFD)** [13]. For a set of VM requests submitted to the system, the system manager first sorts the VMs in decreasing order by their size and then places these sorted VM on the optimal PM that increases the least energy cost. After this greedy VM allocation, the manager then checks each PM \(p_i \): if there exists any simple profitable migration by migrating the VM \(\theta_i \in \Theta(p_i) \) from \(p_i \) to another PM \(p_j \) reduces system energy cost, the manager will transfer \(\theta_i \) from \(p_i \) to \(p_j \).

- **Static Genetic Approach (GA)** [23]. In this static setting, we set the number of the potential solution and the number of iterations both equal to 10000. The candidate solution’s fitness value is defined as the energy cost, i.e., \(\text{fitness}(S) = \Sigma \epsilon(w) \), \(S \) is an allocation solution.

C. Performance Metrics.

In the static setting, we compare these approaches on two performance metrics: 1) **Energy cost** and 2) **Running time**. The energy cost is the sum of system PMs’ energy cost for running VMs and the running time is measured as the computation time used for allocating VMs to PMs.

D. Experiment Results

Fig. 6 shows the energy cost (Fig. 6(a)) and running time (Fig. 6(b)) of these approaches in different cloud systems. From Fig. 6, we have the following observations.

With respect to energy cost (Fig. 6(a)), we can conclude that: 1) In all systems, MA-2, MA-1 and GA approaches produce as little energy cost as the optimal solution LB-OPT, indicating that these three approaches MA-2, MA-1 and GA perform well in the static setting on reducing energy cost. 2) MA-2 produces less energy cost than MA-1. This is because in MA-2, each PM can negotiate with much more PMs than each PM in MA-1, leading MA-2 to identify much more beneficial VM migrations for energy cost reduction. 3) BFD generates much energy cost than MA-2, MA-1 and GA. The potential reason is that in the static setting, once the VMs are allocated to PMs by BFD, there are few beneficial simple VM migrations (i.e., the migration of one VM from one PM to another PM that can reduce system energy cost) that can be identified by BFD. Therefore, BFD performs worse than MA-2, MA-1 and GA in the static setting.

With respect to running time (Fig. 6(b)), on a computer with 2.67 GHz CPU and 2 GB memory, for this scale application with 128 PMs and 200 VMs, BFD...
and MA-2 can return the allocation solution within several seconds (<4s). However, MA-2 and GA approaches take almost 20 seconds to return the final allocation solution. This is because in MA-2, each PM has to negotiate with much more PMs (about 8 times more than that of MA-1), then each PM needs to search much more potential beneficial migrations (about 8 times more than that of MA-1), thereby consuming much more running time. For GA, because the number of iteration has to set large enough (e.g., 1000 rounds) to return the desirable solution, therefore, GA also needs to take much more running time.

In conclusion, in the static setting, compared with traditional VM allocation approaches (i.e., BFD and GA), our proposed MA approach with negotiation radius \(\rho = 1 \) can reduce system energy cost significantly within tolerable running time.

5.2 Validate the Advantage of the MA approach in a Dynamic Setting

A. Experiment Setup

To imitate the dynamics of VMs’ arrival and departure, we redefine each VM \(\theta = (r, a, t, w) \), where \(r \) represents \(\theta \)'s resource requirement, \(a \) represents the arrival time-slot and \(w \) represents the workloads such that \(\theta \) must use \(r \) unit resources for \(w \) time-slots. In this dynamic setting, each VM \(\theta \)'s work load \(w \) distributes in the range [1,4] uniformly. At each time-slot \(t \), we assume that there are \(X(t) \) VM requests newly submitted to the system, where \(X(t) \) follows a Poisson distribution, i.e., \(X \sim \pi(\mu) \). Here, we set the mean value \(\mu = 100 \). In this dynamic setting, VM migration is used to consolidate the VM resources to reduce system energy cost. Therefore, besides comparing with the static VM allocation approaches described in 5.1 (i.e., BFD), we also compare MA with other dynamic VM consolidation approaches.

- **Energy- and Migration-Cost-Aware Approach (pMapper)** [11]. This is an extension of the BFD approach that considers both energy and migration costs. In pMapper, a VM migration is implemented if and only if this VM migration reduces system energy cost while incurring tolerable migration cost. For example, if PM \(p_i \) wishes to migrate its VM \(\theta = \theta(p_i) \) to another PM \(p_j \), this migration should satisfy

\[
|e(\theta) - e(\theta)| - |e(\theta) - e(\theta)| - \beta \cdot d(p_i, p_j) < 0
\]

where \(e(\theta) \) (resp. \(e(\theta) \)) and \(e(\theta) \) (resp. \(e(\theta) \)) are the resource utilization of \(p_i \) (resp. \(p_j \)) before and after the migration of \(\theta \), \(\beta \) determines the importance of energy cost reduction. Here, we set \(\beta = 10 \).

- **Probability-Based Approach (PRO)** [15]. This is a distributed approach. Before implementing this approach, the system manager first needs to determine the high threshold \(h \) and lower threshold \(t \) of the resource utilization. For a set of unallocated VMs, each PM \(p_i \) determines whether to host these VMs with probability \(f(u_w, h) \), which is based on \(h \) and the resource utilization \(u_w \). After this VM allocation, each PM \(p_i \) employs a probabilistic VM migration procedure to avoid resource overutilization and under-utilization. To avoid PM \(p_i \) being overloaded, \(p_i \) can migrate its exceeded VMs out with probability \(f_{\text{migrate}}(u_w, h) \). To avoid \(p_i \) being under-loaded, \(p_i \) can migrate all of its host VMs out to other PMs with probability \(f_{\text{migrate}}(u_w, t) \). Here, we set \(h = 0.9 \) and \(t = 0.2 \).

- **Dynamic Genetic Approach (GA)** [23][27]. In the dynamic setting, the candidate solution’s fitness is a tradeoff between the energy cost and migration cost, i.e.,

\[
\text{fitness}(S) = \gamma \cdot (|e(\theta) - e(\theta)| - \beta \cdot d(p_i, p_j)) - M(C(I, S))
\]

where \(I \) is the current VM allocation and \(S \) is the final allocation returned by GA, \(e(\theta) \) (resp. \(e(\theta) \)) is the energy cost of the PM \(p_i \) in solution \(I \) (resp. \(S \)) and \(M(C(I, S)) \) is the overall migration cost incurred by migrating VMs from solution \(I \) to \(S \), i.e.,

\[
M(C(I, S)) = \sum_{\theta} d(p(\theta_i), p(\theta_j))
\]

where \(d(p(\theta_i), p(\theta_j)) \) denotes the host PM of VM \(\theta \) in solution \(I \) (resp. \(S \)).

In this dynamic setting, we are mainly concerned with energy cost and migration cost metrics. Migrating a VM from PM \(p_i \) to another PM \(p_j \) will incur \(d(p_i, p_j) \) migration cost. More specifically, we record two types of energy cost. The first one is the system energy cost \(E(t) \) of each time slot \(t \):

\[
E(t) = \sum_{p \in P} e(\theta, t)
\]

which is generated by all of the PMs at time slot \(t \). The second type is the system cumulative energy cost \(CE(t) \), which is generated by all of system PMs before time slot \(t \):

\[
CE(t) = \sum_{t=1}^{t} \sum_{p \in P} e(\theta, t)
\]

B. Experiment Results

Table I shows the properties of network diameter \(L \) and average path length \(A(p) \) of the BCube, Tree and Lattice cloud systems. Network diameter \(L \) is defined as the longest communication distance among any two PMs, and average path length \(A(p) \) is computed as the average communication distance within all pairs of PMs.

Fig. 7 and Fig. 8 show the energy cost of each time slot and the cumulative energy cost of the resource allocation approaches within different cloud systems, respectively. From Fig. 7 and Fig. 8, we have the following conclusions:

1) In BCube and Lattice systems (i.e., Fig. 7(a) and Fig. 7(c)), MA-1 generates nearly as little energy cost as MA-2, GA, BFD and pMapper. However, in the Tree system (i.e., Fig. 7(b)), MA-1 approach generates slight more energy cost than the energy costs of MA-2, GA, BFD and pMapper. This phenomenon can be explained by the special odd communication distance among PMs in the Tree system. In the Tree system, the communication distance among agents is odd value, i.e., \(1, 3, 5, 7 \) and 9. With the local negotiation constraint in MA-1 (in MA-1, the negotiation radius \(\rho = 1 \), where each PM can only negotiate with its direct connected PMs), one VM migration can only affect the VM allocation of a specific domain. For example, \(a \) migrates VM \(\theta \) to its domain agents \(\{a, 12, 8\} \) and this VM migration of \(a \) can only affect the surrounding of its local domain agents \(\{a, 11, 15, 8\} \), which does not affect other domains (e.g., \(\{a, 9, 12, 16\} \)) because other domains do not belong to the negotiation domain of \(\{a\} \).
Therefore, in the Tree system, MA-1 approach will miss a number of potential beneficial VM migrations. However, in MA-2 with the negotiation radius \(r = 2 \), each VM migration not only affects the VM allocation of the local domain but also other connected domains (e.g., \(\{ a | 19 \leq a \leq 16 \} \)), thereby much more beneficial migrations will be identified.

2) In all systems, PRO generates much more energy cost than other approaches MA-1, MA-2, GA, BFD and pMapper, indicating that PRO performs worse on reducing system energy cost in the dynamic applications.

Fig. 9 and Fig. 10 show the migration cost of each time slot and the cumulative migration cost of these approaches in different cloud systems, respectively. From Fig. 9 and Fig. 10, we have the following conclusions: 1) In all systems, MA-1 produces much less migration cost than the migration costs produced by MA-2, GA, BFD and pMapper. This observation can be explained as follows: GA, BFD and pMapper all permit global VM migration and MA-2 also permits the VM migration to happen among remotely connected PMs with two hop communication distance, while MA only transfers VMs among locally connected PMs. Thus, MA-2, GA, BFD and pMapper will produce much more migration overhead than MA-1 does. 2) For BCube and Lattice systems, the shorter the average path length Ap (or network diameter), the more migration cost MA-1 incurs. A possible reason is that in the cohesive systems (e.g., the BCube system with \(Ap = 3.47 \)), a change of one PM’s VM load easily influences the loads of its surrounding PMs. Thus, many chain VM migrations will be triggered, resulting in an increase in migration cost. However, although the Tree system has a shorter Ap than that of the Lattice systems, MA-1 approach incurs less migration cost in Tree than it does in Lattice. This phenomenon can be explained by the special odd communication distance among PMs in the Tree system (the detailed explanation can be seen in the above paragraph). 3) In all systems, the larger the network Ap (or network diameter), the more migration costs BFD and PRO generate. This is because BFD and PRO mainly focus on minimizing energy cost, does not consider migration cost when transferring VMs. Therefore, the migration costs of BFD and PRO are proportional to Ap. 4) In all systems, the migration costs of GA and pMapper do not increase proportionally to network diameter or Ap. The
reason is that when Ap1 becomes large, GA and pMapper will not execute some migrations because of their costly migration overhead. 5) In all systems, PRO generates the minimal migration cost compared with the MA-2, MA-1, GA, BFD and pMapper. A possible reason is that there are only a small number of VM migrations executed in PRO.

In summary, in the dynamic setting, on the one hand, the MA approach generates as little energy cost as GA, BFD and pMapper approaches. On the other hand, the MA approach incurs much less migration overhead than these approaches do. Considering the dramatic advantage in reducing energy cost within acceptable migration overhead, MA is a more desirable approach that can balance energy cost reduction and SLA performance guarantee.

6 CONCLUSIONS AND FUTURE WORK

This paper presents a distributed multiagent(MA)-based resource allocation approach to minimize system energy cost. The proposed MA approach consists of two complementary mechanisms: 1) an auction-based VM allocation mechanism, which is devised for agents to decide which PM should host which VM. Through the theoretical analyses, we can determine that the auction-based VM allocation mechanism has a low approximation ratio on energy cost compared with the optimal solution. 2) A negotiation-based VM consolidation mechanism, which is designed for agents to exchange their assigned VMs to save energy costs and address system dynamics. Experimental results show that in the static setting, the MA approach generates the least energy cost within tolerable running time compared with traditional centralized approaches. Moreover, in the dynamic setting, the MA approach can generate as little energy cost as the centralized benchmark approaches, but significantly reduces the migration overhead. These advantages make MA approach a preferable choice for resource management to reduce system energy cost in near real time, while consuming tolerable amounts of network traffic.

In this paper, we only focus on allocating VMs to PMs with the aim of minimizing system energy cost, ignore the objective of maximizing CSP’s revenue of delivering scalable VM resources to users. In the future work, it would be very interesting and necessary to integrate the two objectives (often conflicting) together: in the front-end level, that is allocating VM resources to users, the CSP would like to take full advantage of VM resources to satisfy as many users’ requests as possible, thereby increasing CSP’s revenue. In the back-end level, however, the CSP would like to allocate the VMs to PMs efficiently to generate as little energy cost as possible, thereby decreasing CSP’s operations cost of running user’s applications.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (No.61170164, No. 61472079 and No. 71201077), the Funds for Distinguished Young Scholars of the Natural Science Foundation of Jiangsu Province (No.BK2012020), and the Program for Distinguished Talents of Six Domains in Jiangsu Province (No.2011-D2023).

REFERENCES

Wanyuan Wang received his BS degree in information and computing science from Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2011. He is currently pursuing a Ph.D. degree at the Distributed Intelligence and Social Computing Laboratory, School of Computer Science and Engineering, Southeast University. He has published several articles in refereed journals and conference proceedings, such as the IEEE Transactions on Parallel and Distributed Systems. He has published more than 80 scientific articles in refereed journals and conference proceedings, such as the IEEE Transactions on Parallel and Distributed Systems, the IEEE Transactions on Cybernetics, the IEEE Transactions on Systems, Man, and Cybernetics: Systems, the IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, the IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, the IEEE Transactions on Emerging Topics in Computing, the Journal of Parallel and Distributed Computing, the ACM Transactions on Autonomous and Adaptive Systems, the International Joint Conference on Artificial Intelligence (IJCAI), the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), and the IEEE International Conference on Tools with Artificial Intelligence (ICTAI). He won the best paper award and best student paper award from PRIMA and ICTAI, respectively. He is a senior member of IEEE, a member of the editorial board of Advances in Internet of Things, an editor of the International Journal of Networked Computing and Advanced Information Management, an editor of Operations Research and Fuzzy Logic, and a member of the editorial board of the Chinese Journal of Computers.

Weiwei Wu received his PhD degree in computer science from both City University of Hong Kong and University of Science and Technology of China in 2011. He was a postdoctoral researcher at Nan-yang Technological University in Singapore from 2011 to 2012. He is currently an associate professor at Southeast University, China. His main research interests include optimizations for networks, game theory, and mechanism design. He has published several articles in refereed journals and conference proceedings such as the IEEE Journal on Selected Areas in Communications, Theoretical Computer Science, the Journal of Combinatorial Optimization, the IEEE International Conference on Computer Communications (INFOCOM), and the International Symposium on Algorithms and Computation (ISAAC). He is a member of IEEE.