Multi-Instance Learning and Its Applications in Computer Vision

Min-Ling Zhang (张敏灵)
PALM Lab, School of CSE, Southeast University
Email: zhangml@seu.edu.cn

Xinggang Wang (王兴刚)
MC Lab, School of EIC, Huazhong Univ. of Sci. & Tech.
Email: xgwang@hust.edu.cn

April 22, Wuhan
Outline

- Multi-Instance Learning (MIL)
- Representative Algorithms
- Related Topics
- Applications in Computer Vision
- Conclusion
Outline

- Multi-Instance Learning (MIL)
- Representative Algorithms
- Related Topics
- Applications in Computer Vision
- Conclusion
Origin of MIL

Originated from the research on *drug activity prediction*

Seminal paper [Dietterich et al., AIJ’97]

Problem Scenario

- Drugs are small molecules working by binding to the target area
- For molecules qualified to make the drug, one of its shapes could tightly bind to the target area
Origin of MIL (Cont.)

A molecule may have many alternative shapes

Reprinted from [Dietterich et al., AI’97]

The Difficulty

Biochemists know that whether a molecule is qualified or not, but do not know which shape responses for the qualification
A molecule corresponds to a **bag** of instances

- A bag is positive if it contains at least one positive instance; otherwise it is negative
- The labels of the training bags are known
- The labels of the instances in the training bags are unknown
Formal Definition of MIL

Settings \(\mathcal{X} : \) feature space \(\mathbb{R}^d \); \(\mathcal{Y} : \) label space \(\{-1, +1\} \)

Inputs multi-instance training set \(\mathcal{D} = \{(X_i, y_i) \mid 1 \leq i \leq N\} \)

- \(X_i = \{x_{i1}, \ldots, x_{ij}, \ldots, x_{in_i}\} \subseteq \mathcal{X} \) is a **bag** of instances
 - \(n_i \) is the number of instances in \(X_i \)
 - \(x_{ij} \in \mathcal{X} \) is an instance \([x_{ij1}, \ldots, x_{ijl}, \ldots, x_{ijd}]^\top \)

- \(y_i \in \mathcal{Y} \) is the label of \(X_i \)

- \(X_i \) is a positive bag (thus \(y_i = +1 \)) if there exists \(g \in \{1, \ldots, n_i\} \), \(x_{ig} \) is positive. Yet the value of index \(g \) is unknown

Outputs multi-instance predictive function: \(f : 2^\mathcal{X} \mapsto \mathcal{Y} \)
Comparison between MIL and Traditional Supervised Learning

Traditional (single-instance) learning

Multi-instance learning

Reprinted from [Zhou et al., AIJ’12]
The Power of MIL

In many real-world applications, **bag representation** is a natural choice.

Drugs activity prediction

Image categorization

Text categorization

Pedestrian detection
Outline

- Multi-Instance Learning (MIL)
- Representative Algorithms
- Related Topics
- Applications in Computer Vision
- Conclusion
A Brief Categorization [Amores, AIJ’13]

Instance-space (IS) paradigm
Infer instance-level classifier from the training data ➔ Perform the learning process by aggregating instance-level responses

Bag-space (BS) paradigm
Define distance function (or kernel function) over bags ➔ Perform the learning process by treating bags as a whole

Embedded-space (ES) paradigm
Embed (map) bags into vocabulary-induced feature space ➔ Perform the learning process in the embedded feature space

APR [Dietterich et al., AIJ’97]
Diverse Density [Maron & Lozano-Pérez, NIPS’97]
MI-SVM [Andrews et al., NIPS’02]
......

Citation-kNN [Wang & Zucker, ICML’00]
MI-Kernel [Gärtner et al., ICML’02]
MIGraph [Zhou et al., ICML’09]
......

MILES [Chen et al., TPAMI’06]
CCE [Zhou & Zhang, KAIS’07]
......
APR (Axis-Parallel Rectangles) Algorithms

Instance-level classifier
An APR which encloses at least one instance from each positive bag and no instance of any negative bag.

Three APR algorithms
standard, *outside-in*, and *inside-out* APR algorithms

best performance: Iterated-discrim APR
on *Musk1*: 92.4%; on *Musk2*: 89.2%

Specific to the *drug activity prediction* problem
Diverse Density [Maron & Lozano-Pérez, NIPS’97]

The different shapes that a molecule can take on are represented as a path. The intersection point of positive paths is where they took on the same shape.

Samples taken along the paths. Section B is a high density area, but point A is a high Diverse Density area.

Figure 1: A motivating example for Diverse Density

Instance-level classifier

Target concept (point $t \in \mathbb{R}^d$ in the feature space) which maximizes the diverse density (DD) over the training bags, i.e. being near to instances of different positive bags and far from instances of all negative bags.
Diverse Density (Cont.)

Probabilistic formulation of diverse density

\[DD(t) = \Pr(t \mid X_1, \ldots, X_N) \]
\[\propto \Pr(X_1, \ldots, X_N \mid t) \quad \text{[Assuming equal prior probability]} \]
\[= \prod_{p: y_p = +1} \Pr(X_p \mid t) \cdot \prod_{q: y_q = -1} \Pr(X_q \mid t) \quad \text{[Assuming conditional independence among bags]} \]
\[\propto \prod_{p: y_p = +1} \Pr(t \mid X_p) \cdot \prod_{q: y_q = -1} \Pr(t \mid X_q) \quad \text{[Assuming equal prior probability]} \]

For positive bag: \[\Pr(t \mid X_p) = 1 - \prod_{j=1}^{n_p} (1 - \Pr(t \mid x_{pj})) \]

For negative bag: \[\Pr(t \mid X_q) = \prod_{j=1}^{n_q} (1 - \Pr(t \mid x_{qj})) \]

Maximize DD by gradient search

\[\Pr(t \mid x) = \exp(-||x - t||^2) \]
MI-SVM [Andrews et al., NIPS’02]

Instance-level classifier

A hyperplane (\mathbf{w}, b) in \mathbb{R}^d with $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$

Margin over MI bag (X_i, y_i)

$$\gamma_i = y_i \max_{1 \leq j \leq n_i} (\langle \mathbf{w}, \mathbf{x}_{ij} \rangle + b)$$

defined by the “most positive” (“least negative”) instance

Maximum margin formulation

$$\min_{\mathbf{w}, b, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \xi_i$$

s.t. $\forall i : y_i \max_{1 \leq j \leq n_i} (\langle \mathbf{w}, \mathbf{x}_{ij} \rangle + b) \geq 1 - \xi_i, \; \xi_i \geq 0$
MI-SVM (Cont.)

Heuristic EM-style optimization

E-step Identify most positive instance for each positive bag

$$\forall (X_i, y_i) \text{ with } y_i = +1 :$$

$$g_i = \arg\max_{1 \leq j \leq n_i} (\langle w, x_{ij} \rangle + b)$$

M-step Update hyperplane based on identified instances (QP)

$$\min_{w, b, \xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i$$

$$\forall i \text{ with } y_i = +1 :$$

$$\langle w, x_{ig_i} \rangle + b \geq 1 - \xi_i$$

$$\forall i \text{ with } y_i = -1 :$$

$$\langle w, x_{ij} \rangle + b \geq 1 - \xi_i \ (1 \leq j \leq n_i)$$

$$\forall i : \quad \xi_i \geq 0$$
Distance function between two bags $X = \{x_1, \ldots, x_m\}$ and $Z = \{z_1, \ldots, z_n\}$

Hausdorff distance determined by one matching pair

$$H(X, Z) = \max\{h(X, Z), h(Z, X)\} \quad \text{where} \quad h(X, Z) = \max_{x \in X} \min_{z \in Z} ||x - z||$$

sensitive to outlying point

replace $h(X, Z)$ with: $h_k(X, Z) = \min_{x \in X} \min_{z \in Z} ||x - z||$ (k-th ranked distance)

- $k=m$
 $$h(X, Z) = h_m(X, Z)$$
- $k=1$
 $$H(X, Z) = \min_{x \in X} \min_{z \in Z} ||x - z||$$

Chamfer distance determined by multiple matching pairs

$$C(X, Z) = \frac{1}{|X|} \sum_{x \in X} \min_{z \in Z} ||x - z|| + \frac{1}{|Z|} \sum_{z \in Z} \min_{x \in X} ||x - z||$$
Citation-κNN (Cont.)

References and citers

r-references set for Z:

\[R^r(Z) = \{ X \mid X \text{ is among } Z \text{'s } r \text{ nearest neighbors} \} \]

c-citers set for Z:

\[C^c(Z) = \{ X \mid Z \text{ is among } X \text{'s } c \text{ nearest neighbors} \} \]

In general setting, $r \neq c$

Make prediction for Z by voting among the labeled bags in $R^r(Z) \bigcup C^c(Z)$
MI-Kernel [Gärtner et al., ICML’02]

Kernel function between two bags $X = \{x_1, \ldots, x_m\}$ and $Z = \{z_1, \ldots, z_n\}$

Set kernel

$$K(X, Z) = \sum_{x \in X} \sum_{z \in Z} \kappa(x, z)$$

$K(\cdot, \cdot)$ is a kernel on 2^X \[\leftrightarrow\] $\kappa(\cdot, \cdot)$ is a kernel on X

$$K(X, Z) \rightarrow D(X, Z) = \sqrt{K(X, X) - 2K(X, Z) + K(Z, Z)}$$

Set kernel exploits the pairwise relations across bags, while ignores relations among instances within the bag
MIGraph [Zhou et al., ICML’09]

Usefulness of relation information among instances

Image with six marked patches each corresponding to an instance

Ignore relations among instances \Rightarrow all bags are similar due to identical number of similar instances

Consider relations among instances \Rightarrow the first two bags are more similar than the third bag
MIGraph (Cont.)

Map each bag into a (weighted) graph

\[X \rightarrow G_X = (V_X, E_X) \]

\[(\epsilon \text{-graph}) \]

\[V_X = \{ x_i \mid 1 \leq i \leq m \} \]

\[E_X = \{ e_{uv} \mid \text{dist}(x_u, x_v) \leq \epsilon \} \]

(weight \(w_{uv} \propto 1/\text{dist}(x_u, x_v) \))

Derive the graph kernel

\[K_G(X, Z) = \sum_{x \in V_X} \sum_{z \in V_Z} \kappa_{\text{node}}(x, z) + \sum_{e \in E_X} \sum_{e' \in E_Z} \kappa_{\text{edge}}(e, e') \]

MI-Kernel [Gärtner et al., ICML’02]

represent edge \(e_{uv} \) as \([d_u, p_u, d_v, p_v]^\top \)

\(d_u : \) degree of \(x_u \)

\(p_u : \) \(w_{uv} / \sum_{e_{uv} \in E_X} w_{uv} \)

Complexity of MIGraph: \(O(mn + |E_X||E_Z|) \)

an efficient variant miGraph with complexity \(O(mn) \) [Zhou et al., ICML’09]
Vocabulary for embedding

\[V = \{ x_{i,j} \mid 1 \leq i \leq N, 1 \leq j \leq n_i \} \]
\[= \{ u^k \mid 1 \leq k \leq K \} \text{ (re-indexed with } K = \sum_{i=1}^{N} n_i) \]

Embedding function: \(M_V : 2^X \mapsto \mathbb{R}^K \)

\[M_V(X) = [a_1, \ldots, a_k, \ldots, a_K]^\top \]

\[a_k = \text{sim}(X, u^k) = \max_{x \in X} \exp \left(-\frac{||x - u^k||^2}{\sigma^2} \right) \]

Generate binary training set via embedding function \(M_V \):
\[D_V = \{(M_V(X_i), y_i) \mid 1 \leq i \leq N\} \]

Induce binary classifier \(h : \mathbb{R}^K \mapsto \{-1, +1\} \) based on \(D_V \)

Make prediction on unseen bag \(Z \) as: \(h(M_V(Z)) \)
CCE [Zhou & Zhang, KAIS’07]

Vocabulary for embedding

\[C = \{ c_1, \ldots, c_k, \ldots, c_{\hat{K}} \} \]

(centers of \(\hat{K} \) groups by clustering all the instances in \(V \))

Embedding function:

\[M_C : 2^X \mapsto \{0, 1\}^{\hat{K}} \]

\[M_C(X) = [a_1, \ldots, a_k, \ldots, a_{\hat{K}}]^\top \]

\[a_k = 1 \text{ if } S_k \neq \emptyset; \text{ Otherwise, } a_k = 0 \]

(\(S_k \) : instances of \(X \) falling into the \(k \)-th group, i.e. closest to \(c_k \))

Ensemble

Generate binary training set via embedding function \(M_C : D_C = \{(M_C(X_i), y_i) \mid 1 \leq i \leq N\} \)

Induce binary classifier \(h : \{0, 1\}^{\hat{K}} \mapsto \{-1, +1\} \) based on \(D_C \)

Make prediction on unseen bag \(Z \) as: \(h(M_C(Z)) \)
Outline

- Multi-Instance Learning (MIL)
- Representative Algorithms
- Related Topics
- Applications in Computer Vision
- Conclusion
Multi-Instance Regression (MIR)

In some applications, real-valued responses would be more desirable than discrete-valued ones

e.g.: activity level prediction vs. active/inactive classification

Applications of MIR

- drug activity prediction [Ray & Page, ICML’01; Amar et al., ICML’01]
- climate research [Wang et al., SDM’08]
- sentiment analysis [Pappas & Popescu-Belis, EMNLP’14]
- remote sensing [Wang et al., TGRS’12]
-

Solving MIR problems

- IS paradigm: EM-style iterations for updating instance-level regressor
- BS/ES paradigm: BS/ES methods for classification readily adaptable
MIL with Unlabeled Data

Multi-instance clustering [Zhang & Zhou, APIN’07; Zhang et al., TNN’11]

Gain insights on the distribution of multi-instance bags, and serve as a pre-processing step for multi-instance prediction (e.g. generate bag-level vocabulary for the ES paradigm)

Semi-supervised MIL [Rahmani & Goldman, ICML’06; Jia & Zhang, AAAI’08; Zeisl et al., CVPR’08]

If instances in bags were assumed as i.i.d. samples, MIL is just a special case of semi-supervised learning [Zhou & Xu, ICML’07]

- instances from negative bags → labeled negative examples
- instances from positive bags → unlabeled examples with positive constraints

Multi-instance active learning [Settles et al., NIPS’07; Liu et al., MMM’09]
Generalized MIL (GMIL)

Standard MIL assumption
An underlying target concept \(h : \mathcal{X} \mapsto \{-1, +1\} \) which governs the prediction of class label \(f(X) \) on the bag \(X \):
\[
f(X) = +1 \iff \exists x \in X : h(x) = +1
\]

GMIL assumption [Weidmann et al., ECML’03]

A set of underlying concepts \(\mathcal{H} = \{h_1, \ldots, h_r\} \) which governs the prediction of class label \(f(X) \) on the bag \(X \):

- **presence-based:** \(f(X) = +1 \iff \forall h_i \in \mathcal{H} : \Delta(X, h_i) \geq 1 \)
- **threshold-based:** \(f(X) = +1 \iff \forall h_i \in \mathcal{H} : \Delta(X, h_i) \geq t_i \)
- **count-based:** \(f(X) = +1 \iff \forall h_i \in \mathcal{H} : t_i \leq \Delta(X, h_i) \leq z_i \)

\(\Delta(X, h_i) \) : number of instances in \(X \) with concept \(h_i \)
\(t_i, z_i \) : lower and upper threshold for concept \(h_i \)

Another GMIL formulation: assuming *attraction* concepts as well as *repulsion* concepts [Scott et al., TechRep’03; Tao et al., ICML’04; Tao et al., TPAMI’08]
Multi-Instance Multi-Label Learning (MIML)

Multi-Instance Learning (MIL)

Input Ambiguity

object with many alternative input descriptions, i.e. instances

Multi-Label Learning (MLL)

[Zhang & Zhou, TKDE’14]

Output Ambiguity

object with many alternative input descriptions, i.e. labels
MIML (Cont.)

Real-world objects are usually inherited with input ambiguity as well as output ambiguity

[Zhou et al., AIJ’12; Zha et al., CVPR’08; Briggs et al., KDD’12; Li et al., TCBB’12; Surdeanu et al., EMNLP’12; Wu et al., TCBB’14]

An image usually contains **multiple** regions each can be represented by an instance

The image can simultaneously belong to **multiple** classes

Elephant

Lion

Grassland

Tropic

Africa

... ...
MIML task:
To learn a function \(f_{\text{MIML}} : 2^X \rightarrow 2^Y \) from a given data set \(\{(X_1, Y_1), (X_2, Y_2), \ldots, (X_m, Y_m)\} \) where \(X_i \subseteq X \) is a set of instances \(\{x_1^{(i)}, x_2^{(i)}, \ldots, x_{n_i}^{(i)}\} \), \(x_j^{(i)} \in X \) (\(j = 1, 2, \ldots, n_i \)), and \(Y_i \subseteq Y \) is a set of labels \(\{y_1^{(i)}, y_2^{(i)}, \ldots, y_{l_i}^{(i)}\} \), \(y_k^{(i)} \in Y \) (\(k = 1, 2, \ldots, l_i \)).

\(X \) - the instance space
\(Y \) - the set of class labels
\(n_i \) - the number of instances in \(X_i \)
\(l_i \) - the number of labels in \(Y_i \)

More on MIML:
Key Instance Detection (KID) for MIL

Detect key (positive) instances in the bags are desirable for a number of MIL applications

e.g. locating region of interest (ROIs) in CBIR [Zhou et al., AJCAI’05]

Solutions to KID in MIL

- Rely on instance-level classifier of IS methods (e.g. DD, MI-SVM)
- Design customized algorithms [Li et al., ECML’09; Liu et al., ACML’12; Kandemir & Hamprecht, UAI’14; Kotzias et al., KDD’15]
Many effective MIL algorithms have been proposed and studied, e.g., the J. Amores’s AIJ survey.

Few studies were about MIL bag generators although they affect the performance seriously.

Image bag generators are of particular interest in existing MIL studies.
Bag Generator for MIL (Cont.)

Nine popular image bag generators [Wei & Zhou, MLJ, in press]

- **Row** [Maron & Ratan, ICML’98]
- **SB** [Maron & Ratan, ICML’98]
- **SBN** [Maron & Ratan, ICML’98]
- **Blobworld** [Carson et al., TPAMI’02]
- **k-meansSeg** [Zhang et al., ICML’02]
- **WavSeg** [Zhang et al., ICME’04]
- **JSEG-bag** [Liu et al., ICIEA’08]
- **LBP** [Ojala et al., TPAMI’02]
- **SIFT** [Lowe, IJCV’04]

Non-segmentation bag generators

Segmentation bag generators

Local descriptor-based bag generators
SBN (Single Blob with Neighbors)

Instance
one blob with four neighboring blobs

Image (bag)
filtered and resized to 8x8

Blob: 2x2 patch

instance =< \(r_{i0}, g_{i0}, b_{i0}, r_{i0} - r_{i1}, g_{i0} - g_{i1}, b_{i0} - b_{i1}, \)
\(r_{i0} - r_{i2}, g_{i0} - g_{i2}, b_{i0} - b_{i2}, r_{i0} - r_{i3}, g_{i0} - g_{i3}, b_{i0} - b_{i3}, r_{i0} - r_{i4}, g_{i0} - g_{i4}, b_{i0} - b_{i4} > \)
Bag Generator for MIL (Cont.)

Blobworld

Components of the L*a*b* color space

- Features extraction
- Features: \(\{ < L_i^*, a_i^*, b_i^*, a_i, c_i, p_i, x_i, y_i > \mid i = 1, 2, ..., \# \text{ of pixels} \} \)
 - Texture features
 - Pixel features
 - The pixel position

Grouping

- Image regions features
- Describe regions
- Regions features (instances)
Bag Generator for MIL (Cont.)

LBP (Local Binary Patterns)

Image (bag)
35 sliding windows

Instance
58-dimensional LBP descriptors

<table>
<thead>
<tr>
<th>223</th>
<th>146</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>88</td>
<td>200</td>
</tr>
<tr>
<td>197</td>
<td>164</td>
<td>216</td>
</tr>
</tbody>
</table>

Example:
(11110111) sub = 247

SIFT (Scale Invariant Feature Transform)

Image (bag)
40 keypoints

Instance
128-dimensional SIFT descriptors

Image gradients

Keypoint descriptor
Bag Generator for MIL (Cont.)

Recent extensive empirical study [Wei & Zhou, MLJ, in press]
6,923 configurations of experiments
[9 bag generators; 7 MIL algorithms; 4 patch sizes; 43 data sets]

Two significant new observations

- Bag generators with a dense sampling strategy (SB, SBN, LBP) perform better than those with other strategies
- The standard MIL assumption of learning algorithms is not suitable for image classification tasks

Code (image bag generators for MIL)
http://lamda.nju.edu.cn/code_MIL-BG.ashx
Scalable MIL

The limitation of MIL

- Complexity of MIL’s hypothesis space
- Benefit of bag representations

An undesired outcome

most MIL algorithms are usually time-consuming and incapable of handling large scale MIL problems
Scalable MIL (Cont.)

The real world MIL applications

Millions of images

Millions of genes

And other millions of complex objects or examples ...
Scalable MIL (Cont.)

Recent efforts towards scalable MIL [Wei et al., TNNLS, in press]

miFV (MIL based on the Fisher Vector representation)

Gradient vector for a sample of observations (i.e. bag)

\[G_{\lambda}^S = \nabla_{\lambda} \log p(S|\lambda) \]

A sample of observations

Parameters

A probability density function

The dimensionality of \(G_{\lambda}^S \) only depends on the number of generative parameters in \(p \), rather than on the sample size
Scalable MIL (Cont.)

Recent efforts towards scalable MIL [Wei et al., TNNLS, in press]

miFV (MIL based on the Fisher Vector representation)

\[\mathcal{K}_{FK}(S_1, S_2) = G^{S_1}_\lambda \top F^{-1}_\lambda G^{S_2}_\lambda \]

Fisher vector representation

[Sánchez et al., IJCV’13]

Fisher information matrix
Scalable MIL (Cont.)

Recent efforts towards scalable MIL [Wei et al., TNNLS, in press]

miFV (MIL based on the Fisher Vector representation)

$$
k_{FK}(S_1, S_2) = G^{S_1}_{\lambda} \top F^{-1}_{\lambda} G^{S_2}_{\lambda}
$$

Fisher vector representation

[Sánchez et al., IJCV’13]

Cholesky decomposition

$$
k_{FK}(S_1, S_2) = G^{S_1}_{\lambda} \top L_{\lambda} \top L_{\lambda} G^{S_2}_{\lambda}
$$
Recent efforts towards scalable MIL \cite{Wei et al., TNNLS, in press}

miFV (MIL based on the \textbf{Fisher Vector} representation)

\[
\mathcal{K}_{FK}(S_1, S_2) = G_{\lambda}^{S_1} \top F_{\lambda}^{-1} G_{\lambda}^{S_2}
\]

Fisher vector representation
\cite{Sánchez et al., IJCV’13}

Cholesky decomposition

Nonlinear kernel machine with \(\mathcal{K}_{FK}(\cdot, \cdot) \)

Linear kernel machine with feature vector \(f^S_{\lambda} \)

Fisher Vector

\[
f^S_{\lambda} = L_{\lambda} G^S_{\lambda} = L_{\lambda} \Delta_{\lambda} \log p(S|\lambda)
\]
Scalable MIL (Cont.)

Advantages of miFV

- Dimensionality of the FV is independent of the size of training set ➔ efficiency
- Capture high-order statistics in the FV (e.g. (co)variance of instances) ➔ effectiveness

Highly competitive performance with hundreds (or even thousands) of times faster than state-of-the-art MIL algorithms
[data sets: up to 60K+ bags with 0.68M+ instances]

miVLAD (MIL based on the Vector of Locally Aggregated Descriptors)

A simplified version of miFV which is more efficient

Code (miFV & miVLAD)

http://lamda.nju.edu.cn/code_SMIL.ashx
Outline

- Multi-Instance Learning (MIL)
- Representative Algorithms
- Related Topics
- Applications in Computer Vision
- Conclusion
Applications in Computer Vision

- Image Classification
- Object Detection
- Object Discovery (Weakly Supervised Object Detection)
- Semantic Segmentation
- Visual Tracking
Image Classification

Mining mid-level image representation [Li et al., CVPR’13, Wang et al., ICML’13]

- Mining discriminative patterns using MIL for image representation

Quannan Li, Jiajun Wu, and Zhuowen Tu, "Harvesting Mid-level Visual Concepts from Large-scale Internet Images", CVPR 2013

Min-Ling Zhang, Xinggang Wang VALSE 2016 Tutorial
Image Classification

Multiple Instance Learning with Deep Learning [Wu et al., CVPR’15; Wei, et al., TPAMI’15]

• Learning deep feature for “instance” (image patch)
• Max/mean for multiple instance learning

Jiajun Wu, Yinan Yu, Chang Huang, Kai Yu, Deep Multiple Instance Learning for Image Classification and Auto-Annotation, CVPR 2015
Yunchao Wei, Wei Xia, Min Lin, Junshi Huang, Bingbing Ni, Jian Dong, Yao Zhao, Shuicheng Yan, HCP: A Flexible CNN Framework for Multi-label Image Classification, PAMI 2015
Object Detection

Learning object detector using multiple instance learning

[Viola et. al, NIPS’06]

[Dollar et. al, ECCV’08]

[Felzenszwalb et. al, TPAMI’10]

Learning object detector using weak label

Mining object part from bounding-box annotation

Paul Viola, John C. Platt, and Cha Zhang, Multiple Instance Boosting for Object Detection, NIPS 2006
Piotr Dollár, Boris Babenko, Serge Belongie, Pietro Perona, and Zhuowen Tu, "Multiple Component Learning for Object Detection", ECCV 2008
Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan, Object Detection with Discriminatively Trained Part Based Models, TPAMI 2010
Object Discovery

Big Data vs. Expensive Labels

Possible solutions to this problem: clustering based, matching based, co-segmentation based, topic model based, multi-instance learning based methods.

Solving this problem by multiple instance learning
- Image as bag, since image label is given
- Proposals (Selective Search, EdgeBox, Bing) as instances [Zhu et al, TPAMI’14]
 - Proposal descriptors: Deep CNN Features, Fisher Vectors
 - Number of proposals: ~2k (SS), ~3k (EB)

Benchmark

- **PASCAL VOC 2007**
 - CorLoc, percentage of image with at least one correctly localized object
 - Average Precision, BBox IoU \(\geq 0.5 \)

<table>
<thead>
<tr>
<th>Method</th>
<th>CorLoc (%) (trainval)</th>
<th>mAP (test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-fold MIL [Cinbis et al., TPAMI’16]</td>
<td>47.3</td>
<td>27.4</td>
</tr>
<tr>
<td>RMI-SVM [Wang et al., ICCV’15]</td>
<td>40.2</td>
<td>-</td>
</tr>
<tr>
<td>LCL [Wang et al., ECCV’14]</td>
<td>48.5</td>
<td>31.6</td>
</tr>
<tr>
<td>WSDDN [Bilen & Vedaldi, CVPR’16]</td>
<td>58.0</td>
<td>39.3</td>
</tr>
<tr>
<td>DPM-v5</td>
<td>-</td>
<td>33.7</td>
</tr>
</tbody>
</table>

- **ImageNet** [Tang et al., CVPR’14]
 - Average CorLoc of 3,624 classes and 939,542 images is \(\textbf{53.2} \% \)

Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid, Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning, TPAMI 2016

Kevin Tang, Armand Joulin, Li-Jia Li, Li Fei-Fei, Co-localization in Real-World Images, CVPR 2014

Xinggang Wang, Zhuotun Zhu, Cong Yao, Xiang Bai. Relaxed Multiple-Instance SVM with Application to Object Discovery. ICCV 15

Relaxed MIL for Object Discovery

- A low rank formulation [Wang et al., NC’13]

\[
\min_{A,E,Z} \|k\|_* + \gamma \|E\|_1 \\
\text{s.t. } X\text{diag}(Z) = A + E, \forall k \in [k] \bigvee_{i=1}^{mk} z_i^{(k)} = 1
\]

- \(A \) is the low-rank part
- \(E \) is sparse error
- \(\text{diag}(Z) \) is \(N \times N \) block-diagonal matrix with \(K \) blocks \(\{\text{diag}(Z^{(k)})\} \)

- A discriminative formulation

\[
p_{ij} = \Pr(y_{ij} = 1|x_{ij}; w) = \frac{1}{1 + e^{-w^T x_{ij}}}
\]

\[
P_i = \Pr(Y_i = 1|X_i; w) = 1 - \prod_{j=1}^{m_i} (1 - p_{ij}) \quad \text{(NOR)}
\]

\[
\min_w \frac{\lambda}{2} \|w\|^2 + \frac{\beta}{n} \sum_{i=1}^{n} L_{bag_i} + \frac{1}{n} \sum_{i=1}^{n} \frac{1}{m_i} \sum_{j=1}^{m_i} L_{ins_{ij}}
\]

\[
L_{bag_i} = -\{Y_i \log(P_i) + (1 - Y_i) \log(1 - P_i)\},
\]

\[
L_{ins_{ij}} = \max(0, [m_0 - \text{sgn}(p_{ij} - p_0)w^T x_{ij}])
\]
Motivation: avoiding poor local optima in MIL

Multi-fold weakly supervised training
1) Initialization of positive and negative instances
2) For iteration $t = 1$ to T
 a) Divide positive images randomly into K folds
 b) For $k = 1$ to K
 i) Train using positive examples in all folds but k, and all negative examples
 ii) **Re-localize** positives by selecting the top scoring window in each image of fold k using this detector
 c) Train detector using re-localized positives and all negatives
 d) Add new negative windows by hard-negative mining
3) Return final detector and object windows in train data

Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid, Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning, TPAMI 2016
Semantic Segmentation

- **MIL-Boost Segmentation** [Galleguillos et al., ECCV’08]

- **Weakly Supervised Deep Segmentation** [Pinheiro et al., CVPR’15]
Semantic Segmentation

- **MIL-Boost Segmentation** [Galleguillos et al., ECCV’08]

- **Weakly Supervised Deep Segmentation** [Pinheiro et al., CVPR’15]

Convex max, Log-Sum-Exp (LSE)

\[
s^k = \frac{1}{r} \log \left[\frac{1}{h^o w^o} \sum_{i,j} \exp(r s^k_{i,j}) \right]
\]

Carolina Galleguillos, Boris Babenko, Andrew Rabinovich, Serge Belongie, Weakly Supervised Object Localization with Stable Segmentations, ECCV 08
Pedro O. Pinheiro, Ronan Collobert. From Image-level to Pixel-level Labeling with Convolutional Networks. CVPR 2015
Semantic Segmentation

- **MIL-Boost Segmentation** [Galleguillos et al., ECCV’08]
Object Tracking

Motivation: Learning robust appearance model using MIL

Babenko B., Yang M., Belongie S., "Visual Tracking with Online Multiple Instance Learning", TPAMI 2011

Min-Ling Zhang, Xinggang Wang | VALSE 2016 Tutorial
Applications in Computer Vision

- MIL is a very effective tool for weakly supervised learning in computer vision applications.

- MIL is able to mining informative features in image.

- MIL works well with deep networks! Any differentiable MIL operator can be integrated into deep networks.
Outline

- Multi-Instance Learning (MIL)
- Representative Algorithms
- Related Topics
- Applications in Computer Vision
- Conclusion
Introductory Materials

Multi-instance regression

Multi-instance clustering

For More Details…

Semi-supervised MIL

Multi-instance active learning

For More Details…

Generalized MIL

Multi-instance multi-label learning (MIML)

For More Details

Key Instance Detection for MIL

Bag generators for MIL

Scalable MIL

Data & Code

Data for MIL

✓ http://www.miproblems.org/datasets/
✓ http://lamda.nju.edu.cn/CH.Data.ashx#data

Code for MIL

✓ https://weka.wikispaces.com/Multi-instance+classification
 [Weka MIL toolbox]
✓ http://prlab.tudelft.nl/david-tax/mil.html
✓ http://lamda.nju.edu.cn/CH.Data.ashx#code
Thanks!