Course Goal and its Preliminary Courses

The Preliminary Courses are:
- Data Structure
- Database Principles
- Database Design and Application

The students should already have the basic concepts about database system, such as data model, data schema, SQL, DBMS, transaction, database design, etc. Now we will introduce the implementation techniques of Database Management Systems. The goal is to **build the foundation of further research in database field and to use database system better** through the study of this course.

Main Contents

Introduce the inner implementation technique of every kind of DBMS, including the architecture of DBMS, the support to data model and the implementation of DBMS core, user interface, etc. The emphasis is the basic concepts, the basic principles and the implementation methods related to DBMS core.

Because the relational data model is the mainstream data model, and distributed DBMS includes all aspects of classical centralized DBMS, the main thread of this course is relational distributed database management system. The implementation of every aspects of DBMS are introduced according to distributed DBMS. Some contents of other kinds of DBMS are also introduced, including federated database systems, parallel database systems and object-oriented database systems, etc. Along with the continuous progress of database technique, new contents will be added at any time.

Course History

- Database System Principles (before 1984) —— relational model theory, some query optimization algorithms
- Database Management Systems and Their Implementation (after 1995) —— not limited to DDBMS, hope to introduce the implementation techniques of DBMS more thoroughly. Along with the progress of database technique, new contents can be added without changing the course name.

References

1) Stefano Ceri, “Distributed Databases”
5) S. Bing Yao et al, “Query Optimization in DDBS”
6) Courseware: http://cse.seu.edu.cn/people/lixu/resource
1. Introduction
The history, classification, and main research contents of database systems; Distributed database system

2. DBMS Architecture
The composition of DBMS and its process structure; The architecture of distributed database systems

3. Access Management of Database
Physical file organization, index, and access primitives

4. Data Distribution
The fragmentation and distribution of data, distributed database design, federated database design, parallel database design, data catalog and its distribution

5. Query Optimization
Basic problems; Query optimization techniques; Query optimization in distributed database systems; Query optimization in other kinds of DBMS

6. Recovery Mechanism
Basic problems; Updating strategies and recovery techniques; Recovery mechanism in distributed DBMS

7. Concurrency Control
Basic problems; Concurrency control techniques; Concurrency control in distributed DBMS; Concurrency control in other kinds of DBMS

1.1 The History of Database Technology and its Classification

(1) According to the development of data model
- No management (before 1960): Scientific computing
- File system: Simple data management
- Demand of data management growing continuously, DBMS emerged.
 - 1964, the first DBMS (American): IDS, network
 - 1969, the first commercial DBMS of IBM, hierarchical
 - 1970, E.F.Codd (IBM) bring forward relational data model
 - Other data model: Object Oriented, deductive, ER, ...

(2) According to the development of DBMS architectures
- Centralized database systems
- Parallel database systems
- Distributed database systems (and Federated database systems)
- Mobile database systems

(3) According to the development of architectures of application systems based on databases
- Centralized structure: Host + Terminal
- Distributed structure
- Client/Server structure
- Three tier/multi-tier structure
- Mobile computing
- Grid computing (Data Grid), Cloud Computing

(4) According to the expanding of application fields
- OLTP
- Engineering Database
- Deductive Database
- Multimedia Database
- Temporal Database
- Spatial Database
- Data Warehouse, OLAP, Data Mining
- XML Database
- Big Data, NoSQL, NewSQL
What is DDB?
A DDB is a collection of correlated data which are spread across a network and managed by a software called DDBMS.

Two kinds:
1. Distributed physically, centralized logically (general DDB)
2. Distributed physically, distributed logically too (FDBS)

We take the first as main topic in this course.

Features of DDBS:
- Distribution
- Correlation
- DDBMS

The advantages of DDBS:
- Local autonomy
- Good availability (because support multi copies)
- Good flexibility
- Low system cost
- High efficiency (most access processed locally, less communication comparing to centralized database system)
- Parallel process

The disadvantages of DDBS:
- Hard to integrate existing databases
- Too complex (system itself and its using, maintenance, etc. such as DDB design)

The main problems in DDBS:
Compared to centralized DBMS, the differences of DDBS are as follows:
- Query Optimization (different optimizing goal)
- Concurrency control (should consider whole network)
- Recovery mechanism (failure combination)

Another problem specially for DDBS:
- Data distribution
Main Contains

- The components of DBMS core
- The process structure of DBMS
- The components of DDBMS core
- The process structure of DDBMS

2.1 The Components of DBMS Core

- Database statement (such as SQL)
- Operating system
- Disk
- Semantic analysis and query treatment (DDL, DQ, DML, DCL)
- Grant checking
- Parser
- Application codes
- DBMS core (as a function)
- .exe file

2.2 The Process Structure of DBMS

- Single process structure
- Multi processes structure
- Multi threads structure
- Communication protocols between processes / threads

Single process structure

- The application program is compiled with DBMS core as a single .exe file, running as a single process.

Multi processes structure

- One application process corresponding to one DBMS core process

Multi threads structure

- Only one DBMS process, every application process corresponding to a DBMS core thread.
Communication protocols between processes/threads

- Application programs access databases through API or embedded SQL offered by DBMS, according to communication protocol to realize synchronizing control:

Pipe0: Send SQL statements, inner commands;
Pipe1: return results. The result format:

<table>
<thead>
<tr>
<th>State</th>
<th>TupNum</th>
<th>AttNum</th>
<th>AttName</th>
<th>AttType</th>
<th>AttLen</th>
<th>TmpFileName</th>
</tr>
</thead>
</table>

Pipe0: Send SQL statements, inner commands;
Pipe1: return results. The result format:

- State: 0 – error, 1 – success for insert, delete, update,
 2 – query success, need to treat result further.
- TupNum: tuple number in result.
- AttNum: attribute number in result table.
- AttName: attribute name.
- AttType: attribute type.
- AttLen: byte number of this attribute.
- TmpFileName: name of the temporary file which store the result data, need the above metadata to explain it.

An example of global query optimization

Global query optimization may get an execution plan based on cost estimation, such as:
(1) send R2 to site1, R’
(2) execute on site1:
```
Select *
From R1, R2
Where R1.a = R2.b;
```

2.3 The Components of DDBMS Core

DB: database management
DC: communication control
DD: catalog management
DDBK: core, responsible for parsing, distributed transaction management, concurrency control, recovery and global query optimization.

2.4 The Process Structure of DDBMS

Application process

- Daemon
- SQLThread
- DBMS process
- Site

3. Database Access Management
Main Contains

The access to database is transferred to the operations on files (of OS) eventually. The file structure and access route offered on it will affect the speed of data access directly. It is impossible that one kind of file structure will be effective for all kinds of data access.

- Access types
- File organization
- Index technique
- Access primitives

File Organization

- Heap file: records stored according to their inserted order, and retrieved sequentially. This is the most basic and general form of file organization.
- Direct file: the record address is mapped through hash function according to some attribute's value.
- Indexed file: index + heap file/cluster
- Dynamic hashing: p115
- Grid structure file: p118 (suitable for multi attributes queries)
- Raw disk (notice the difference between the logical block and physical block of file. You can control physical blocks in OS by using raw disk)

Index Technique

- B+ Tree (√ √)
- Clustering index (√)
- Inverted file
- Dynamic hashing
- Grid structure file and partitioned hash function
- Bitmap index (used in data warehouse)
- Others

Access Types

- Query all or most records of a file (>15%)
- Query some special record
- Query some records (<15%)
- Scope query
- Update

Access Primitives (examples)

- int dbopen(char * dbname)
 Function: open a database.
- int dbclosedb(unsigned dbid)
 Function: close a database.
- int dbTableInfo(unsigned rid, TableInfo * tinfo)
 Function: get the information of the table referenced by rid.
- int dbopen(char * tname,int mode, int flag)
 Function: open the table tname and assign a rid for it.
- int dbrename(oldname, newname)
 Function: rename the table.

Bitmap Index - index itself is data

<table>
<thead>
<tr>
<th>Date</th>
<th>Store</th>
<th>Class</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1/96</td>
<td>32</td>
<td>NY</td>
<td>6</td>
</tr>
<tr>
<td>3/1/96</td>
<td>36</td>
<td>MA</td>
<td>9</td>
</tr>
<tr>
<td>3/1/96</td>
<td>38</td>
<td>NY</td>
<td>5</td>
</tr>
<tr>
<td>3/1/96</td>
<td>41</td>
<td>CT</td>
<td>11</td>
</tr>
<tr>
<td>3/1/96</td>
<td>43</td>
<td>NY</td>
<td>9</td>
</tr>
<tr>
<td>3/1/96</td>
<td>46</td>
<td>RI</td>
<td>3</td>
</tr>
<tr>
<td>3/1/96</td>
<td>47</td>
<td>CT</td>
<td>7</td>
</tr>
<tr>
<td>3/1/96</td>
<td>49</td>
<td>NY</td>
<td>12</td>
</tr>
</tbody>
</table>

Bitmap Index - Sales

<table>
<thead>
<tr>
<th>Date</th>
<th>Store</th>
<th>Class</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1/96</td>
<td>32</td>
<td>NY</td>
<td>6</td>
</tr>
<tr>
<td>3/1/96</td>
<td>36</td>
<td>MA</td>
<td>9</td>
</tr>
<tr>
<td>3/1/96</td>
<td>38</td>
<td>NY</td>
<td>5</td>
</tr>
<tr>
<td>3/1/96</td>
<td>41</td>
<td>CT</td>
<td>11</td>
</tr>
<tr>
<td>3/1/96</td>
<td>43</td>
<td>NY</td>
<td>9</td>
</tr>
<tr>
<td>3/1/96</td>
<td>46</td>
<td>RI</td>
<td>3</td>
</tr>
<tr>
<td>3/1/96</td>
<td>47</td>
<td>CT</td>
<td>7</td>
</tr>
<tr>
<td>3/1/96</td>
<td>49</td>
<td>NY</td>
<td>12</td>
</tr>
</tbody>
</table>

Total sales = 7 (4*6+4*3+4+2*6+6*2)
Access Primitives (examples)

- int dbcreateattr(unsigned rid, sstree * attrlist)
 Function: create some attributes in the table referenced by rid.
- int dbupdateattrbyidx(unsigned rid, int nth, sstree attrinfo)
 Function: update the definition of the nth attribute in the table referenced by rid.
- int dbupdateattrbyname(unsigned rid, char * attrname, sstree attrinfo)
 Function: update the definition of attribute attrname in the table referenced by rid.
- int dbinsert(unsigned rid, char * tuple, int length, int flag)
 Function: insert a tuple into the the table referenced by rid.
- int dbdelete(unsigned rid, long offset, int flag)
 Function: delete the tuple specified by offset in the table referenced by rid.
- int dbupdate(unsigned rid, long offset, char * newtuple, int flag)
 Function: update the tuple specified by offset in the table referenced by rid with newtuple.
- int dbgetrecord(unsigned rid, int nth, char* buf)
 Function: fetch out the nth tuple from the table referenced by rid and put it into buffer buf.
- int dbcloseidx(unsigned iid)
 Function: close the index referenced by iid.
- int dbfetch(unsigned rid, char* buf, long offset)
 Function: fetch out the tuple specified by offset from the table referenced by rid and put it into buffer buf.
- int dbfetchtid(unsigned iid, void * pvalue, long*offsetbuf, flag)
 Function: fetch out the TIDs of tuples whose value on indexed attribute has the "flag" relation with pvalue, and put them into offsetbuf. iid is the reference of the index used.
- int dbpack(unsigned rid)
 Function: re-organize the relation, delete the tuples having deleted flag physically.

4. Data Distribution

4.1 Strategies of Data Distribution

(1) Centralized: distributed system, but the data are still stored centralized. It is simplest, but there is not any advantage of DDB.
(2) Partitioned: data are distributed without repetition. (no copies)
(3) Replicated: a complete copy of DB at each site. Good for retrieval-intensive system.
(4) Hybrid (mix of the above): an arbitrary fraction of DB at various sites. The most flexible and complex distributing method.

Comparison of four strategies

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>flexibility</td>
<td>complexity</td>
<td>Advantage of DDBS</td>
<td>Problems with DDBS</td>
</tr>
</tbody>
</table>
4.2 Unit of Data Distribution

(1) According to relation(or file), that means non partition

(2) According to fragments
 - Horizontal fragmentation: tuple partition
 - Vertical fragmentation: attribute partition
 - Mixed fragmentation: both

The criteria of fragmentation:

(1) Completeness: every tuple or attribute must has its reflection in some fragments.

(2) Reconstruction: should be able to reconstruct the original global relation.

(3) Disjointness: for horizontal fragmentation.

Fragmentation Methods

(1) Horizontal Fragmentation
 Defined by selection operation with predicate, and reconstructed by union operation.

 SELECT * FROM R WHERE P ;

 R→n fragments (use $P_1, P_2, \ldots P_n$)
 Fulfill: $P_1 \land P_2 = \text{false} \ (\neg \#)$
 $P_1 \lor P_2 \lor \ldots \lor P_n = \text{true}$

 Derived Fragmentation: relation is fragmented not according to itself’s attribute, but to another relation’s fragmentation.

An example of Derived Fragmentation

TEACHER(TNAME, DEPT)
COURSE(CNAME, TNAME)
Suppose TEACHER has been fragmented according to DEPT, we want to fragment COURSE even if there is no DEPT attribute in it. This will be the fragmentation derived from TEACHER’s fragmentation.

Semi join: $R \bowtie S = \bigoplus (R \bowtie S)$

$\therefore \text{TEACHER}_9 = \text{SELECT} \ast \text{FROM TEACHER WHERE DEPT} = \text{‘9th’;}$

$\text{COURSE}_9 = \text{COURSE} \bowtie \text{TEACHER}_9$

(2) Vertical Fragmentation
 Defined by project operation, and reconstructed by join operation. Note:
 - Completeness: each attribute should appear in at least one fragment.
 - Reconstruction: should fulfill the condition of lossless join decomposition when fragmentizing.
 a. Include a key of original relation in every fragment.
 b. Include a TID of original relation produced by system in every fragment.

(3) Mixed Fragmentation
 Apply fragmentation operations recursively. Can be showed with a fragmentation tree:

 Global relation
 \[
 R \quad R_1 \quad R_2
 \]
 Fragments
 \[
 R_{11} \quad R_{12} \quad R_{13} \quad R_{21} \quad R_{22} \quad R_{23}
 \]
4.3 Different Transparency Level

We can simplify a complex problem through “information hiding” method

- Level 1: Fragmentation Transparency
 User only need to know global relations, he don’t have to know if they are fragmentized and how they are distributed. In this situation, user can not feel the distribution of data, as if he is using a centralized database.

- Level 2: Location Transparency
 User need to know how the relations are fragmentized, but he don’t have to worry the store location of each fragment.

- Level 3: Local Mapping Transparency
 User need to know how the relations are fragmentized and how they are distributed, but he don’t have to worry every local database managed by what kind of DBMS, using what DML, etc.

- Level 4: No Transparency

4.4 Problems Caused by Data Distribution

1) Multi copies’ consistency
2) Distribution consistency
 Mainly the change of tuples’ store location resulted by updating operation. Solution:
 (1) Redistribution
 After Update: Select→Move→Insert→Delete
 (2) Piggybacking
 Check tuple immediately while updating, if there is any inconsistency it is sent back along with ACK information and then sent to the right place.

3) Translation of Global Queries to Fragment Queries and Selection of Physical Copies.

4) Design of Database Fragments and Allocation of Fragments.

Above 1)~3) should be solved in DDBMS. While 4) is a problem of distributed database design.

4.5 Distributed Database Design

1) Distributed database
 - The design of fragments
 - The design of fragment distribution solution
 To understand user’s requirements, we should ask the following questions to every application while requirement analysis:
 - The sites where this application may occur
 - The frequency of this application
 - The data object accessed by this application

Design flow of centralized database

- Requirement Analysis
- Concept Design
- Logic Design
- Physical Design
- DBMS feature
- Hardware, OS feature
- Requirement indication
- DBMS independent data schema
- Outer schema, concept schema
- Inner schema
(1) Fragmentation design

In DDB, it is not true that the fragments should be divided as fine as possible. It should be fragmentized according to the requirement of application. For example, there are following two applications:

App1: SELECT GRADE FROM STUDENT WHERE DEPT='9th' AND AGE>20;
App2: SELECT AVG(GRADE) FROM STUDENT WHERE SEX='Male';

Problem: if STUDENT should be fragmentized horizontally according to DEPT?

General rules:

① Select some important typical applications which occur often.
② Analyze the local feature of the data accessed by these applications.
 ■ For horizontal fragmentation:
 ③ Select suitable predicate to fragmentize the global relations to fit the local requirement of each site. If there is any contradiction, consider the need of more important application.
 ④ Analyze the join operations in applications to decide if derived fragmentation is needed.

(2) Distribution design

Through cost estimation, decide the suitable store location (site) of each distribution unit.

Example:

```
SELECT * FROM R,S
WHERE R.a=S.a AND R.b>20 AND S.c<10;
```

```
R'=σ_{b>20}(R)
S'=σ_{c<10}(S)
R'⋈S'
```

The precondition of horizontal parallel is that R, S are fragmentized beforehand and stored on different disks of a SN structured parallel computer. This is the main problem should be solved in PDB design.
Design flow of parallel database

- **Information requirement**
- **Process requirement**
- **Concept schema**
- **PODBMS feature and the feature of parallel computer system used**
- **Distribution design of data on different disks of the parallel computer**
- **Physical design of each disk**
- **Distribution units**
- **Local schema of every disk**

Data fragmentation mode in PDB

1. **Arbitrary**
 - Fragmentize relation R in arbitrary mode, then stored these fragments on the disk of different processor. For example, R may be divided averagely, or hashed into several fragments, etc.

2. **Based on expression**
 - Put the tuples fulfill some condition into a fragment. Suitable for the situation in which the most query are based on fragmentation conditions. --- excluded respectively.

The difference between PDB and DDB about data fragmentation and distribution

<table>
<thead>
<tr>
<th></th>
<th>PDB</th>
<th>DDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>The goal of fragmentation and distribution</td>
<td>Promote parallel process degree, use the parallel computer's ability as adequately as possible</td>
<td>Promote the local degree of data access, reduce the data transferred on network</td>
</tr>
<tr>
<td>Fragmentation in accordance with PODBMS feature and the feature of parallel computer system used, combining application requirements.</td>
<td>Application requirements, combining the feature of DDDBMS used.</td>
<td></td>
</tr>
<tr>
<td>Distribution mode</td>
<td>On multi disks of a parallel computer</td>
<td>On multi sites in the network</td>
</tr>
</tbody>
</table>

Design flow of DDB with PDB as local database

- If site i is a parallel computer?
 - **Yes**
 - Local physical design of general DDB
 - **Inner schema**
 - **No**

3) Federated database

- In practical applications, there are strong requirements for solving the integration of multi existing, distributed and heterogeneous databases.
- The database system in which every member is autonomic and collaborate each other based on negotiation — federated database system.
- No global schema in federated database system, every federated member keeps its own data schema.
- The members negotiate each other to decide respective input/output schema, then, the data sharing relations between each other are established.
4.6 The Distribution of Catalog

Catalog --- Data about data (Metadata).
Its main function is to transfer the user’s operating demands to the physical targets in system.

4.6.1 Contents of Catalogs
(1) The type of each data object (such as base table, view, ...) and its schema
(2) Distribution information (such as fragment location, ...)
(3) Access routing (such as index, ...)
(4) Grant information
(5) Some statistic information used in query optimization

4.6.2 The features of catalog
(1) mainly read operation on it
(2) very important to the efficiency and the data distribution transparency of the system
(3) very important to site autonomy
(4) the distribution of catalog is decided by the architecture of DDBMS, not by application requirements

(1)–(4) are not changed frequently, while (5) will change on every update operation. For it:

- Update it periodically
- Update it after every update operation

4.6.3 Distribution strategies of catalog

(1) Centralized
- A complete catalog stored at one site.
- Extended centralized catalog: centralized at first; saved after being used; notify while there is update

(2) Fully replicated: catalogs are replicated at each site. Simple in retrieval. Complex in update. Poor in autonomy.

(3) Local catalog: catalogs for local data are stored at each site. That means catalogs are stored along with data.

(4) Different Combination of the above
Use different strategy to different contents of catalog, and then get different combination strategies. Such as:

a. Use fully replicated strategy to distribution information (2), use local catalog strategy to other parts.
b. Use local catalog strategy to statistic information, use fully replicated strategy to other parts.

If want the catalog information about data on other site (look for through broadcast):

- Master catalog: store a complete catalog on some site. Make every catalog information has two copies.
- Cache: after getting and using the catalog information about data on other site through broadcast, save it for future use (cache it). Update the catalog cached through the comparison of version number.

\[
\begin{array}{c|c|c}
\text{R} & \text{R's catalog (Ver No.)} & \text{Cache of R's catalog (Ver No.)} \\
\end{array}
\]
4.6.4 Catalog management in R*
--- Site autonomy

- Characteristics:
 - There is no global catalog
 - Independent naming and data definition
 - The catalog grows reproducibly
 - The most important concept — System Wide Name (SWN)

\(<\text{SWN}>::=\text{User}@\text{UserSite}.\text{ObjectName}@\text{BirthSite}\)
- ObjectName: the name given by user for the data object
- User: user’s name. With this, different users can access different data object using the same name.

- Site autonomy

 - UserSite: the ID of the site where the User is. With this, different users on different sites can use the same user name.
 - BirthSite: the birth site of the data object. There is no global catalog in R* system. At the BirthSite the information about the data is always kept even the data is migrated to other site.
 - Print Name (PN): user used normally when they access a data object.

\(<\text{PN}>::=[\text{User}@\text{UserSite}.]\text{ObjectName}@\text{BirthSite}\)

Name Resolution — Mapping PN to SWN

Establish a synonym table for each user using “Define Synonym ...” statement.

<table>
<thead>
<tr>
<th>ObjectName</th>
<th>SWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mapping PN in different forms according to following rules:
1) PrintName = SWN, need not transform
2) Only have ObjectName: search “ObjectName” in the synonym table of current user on current site.
3) User.ObjectName: search the synonym table of user “User” on current site.
4) User@UserSite.ObjectName

5) ObjectName@BirthSite

If no match for the ObjectName is found in (2), (3) or print name is in the form of (4) or (5), name completion is used.

Name completion rule:
- A missing User is replaced by current User.
- A missing UserSite or BirthSite is replaced by current site ID.

5. Query Optimization

- “Rewrite” the query statements submitted by user first, and then decide the most effective operating method and steps to get the result.

- The goal is to gain the result of user’s query with the lowest cost and in shortest time.
5.1 Summary of Query Optimization in DDBMS

- **Global Query**: a query over global relation.
- **Fragment Query**: a query over fragments.

General flow

1. **Global Query**
 - Transform the queries tree into the most effective form
 - Query decomposition (into several sub-queries which can be executed locally)
 - Decide the order and site of the operations
 - Execute each operation according to the schedule in query plan
 - Query result

Example

S(SNUM, SNAME, CITY)
SP(SNUM, PNUM, QUAN)
P(PNUM, PNAME, WEIGHT, SIZE)

Suppose the fragmentation is as following:

- S1 = _σ_CITY='Nanjing' (S)
- S2 = _σ_CITY='Shanghai' (S)
- SP1 = SP ⊖ S1
- SP2 = SP ⊖ S2

Global Query:

```sql
SELECT SNAME
FROM S,
SP,
P
WHERE S.SNUM=SP.SNUM
AND SP.PNUM=P.PNUM
AND S.CITY='Nanjing'
AND P.PNAME='Bolt'
AND SP.QUAN>1000;
```

Query tree

After equivalent transform (Algebra optimization):

```sql
<table>
<thead>
<tr>
<th>I(S.SNAME)</th>
<th>SP.PNUM=P.PNUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.SNUM=SP.SNUM</td>
<td>q1 CITY='Nanjing'</td>
</tr>
<tr>
<td>q2 QUAN&gt;1000</td>
<td>P</td>
</tr>
<tr>
<td>S1</td>
<td>S2</td>
</tr>
</tbody>
</table>
```

After equivalent transform (Algebra optimization):

```sql
<table>
<thead>
<tr>
<th>I(S.SNAME)</th>
<th>SP.PNUM=P.PNUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.SNUM=SP.SNUM</td>
<td>q1 CITY='Nanjing'</td>
</tr>
<tr>
<td>q2 QUAN&gt;1000</td>
<td>P</td>
</tr>
<tr>
<td>S1</td>
<td>S2</td>
</tr>
<tr>
<td>I1(S1, S.SNAME)</td>
<td>I1(S2, SP1, SP2, P)</td>
</tr>
</tbody>
</table>
```
The result of equivalent transform

if \(F \) in the form of \(F_1 \land F_2 \) and there are only \(E_1 \)'s attributes in \(F_1 \), and there are only \(E_2 \)'s attributes in \(F_2 \), then \(\sigma_{F_1}(E_1 \times E_2) \equiv \sigma_{F_1}(E_1) \times \sigma_{F_2}(E_2) \)

if \(F \) in the form of \(F_1 \lor F_2 \) and there are only \(E_1 \)'s attributes in \(F_1 \), while \(F_2 \) includes the attributes both in \(E_1 \) and \(E_2 \), then \(\sigma_{F_1}(E_1 \times E_2) \equiv \sigma_{F_1}(E_1) \times \sigma_{F_2}(E_2) \)

\(\sigma_{F_1}(E_1 \cup E_2) \equiv \sigma_{F_1}(E_1) \cup \sigma_{F_2}(E_2) \)

\(\sigma_{F_1}(E_1 - E_2) \equiv \sigma_{F_1}(E_1) - \sigma_{F_2}(E_2) \)

\(\sigma_{F_1}(E_1 \times E_2) \equiv \sigma_{F_1}(E_1) \times \sigma_{F_2}(E_2) \)

5.2 The Equivalent Transform of a Query

That is so called algebra optimization. It takes a series of transform on original query expression, and transform it into an equivalent, most effective form to be executed.

For example: \(\Pi_{\text{NAME} \cap \text{DEPT}}((\text{EMP}) \bowtie \text{SUPPLY}) \equiv (\Pi_{\text{NAME}}((\text{EMP})) \bowtie \Pi_{\text{DEPT}}((\text{SUPPLY}))) \)

For example: \(\Pi_{\text{NAME} \cap \text{DEPT}}((\text{DEPT})) \equiv (\Pi_{\text{NAME}}((\text{DEPT}))) \cap (\Pi_{\text{DEPT}}((\text{DEPT}))) \)

The operation optimization of the sub tree (yellow):

First consider distributed \(JN \):

1. (Site \(i \) \& Site \(j \)) \(\bowtie \) (Site \(i \) \& Site \(j \))

2. Distributed join

Then consider “Site Selection”, may produce many combination

For every join operation, there are many computing method:

The goal of query optimization is to select a “good” solution from so many possible execution strategies. So it is a complex task.

(2) The equivalent transform rules of relational algebra

1. Exchange rule of \(\bowtie / \times \): \(E_1 \times E_2 \equiv E_2 \times E_1 \)

2. Combination rule of \(\bowtie / \times \): \(E_1 \times (E_2 \bowtie E_3) \equiv (E_1 \times E_2) \bowtie E_3 \)

3. Cluster rule of \(\bowtie \): \(\Pi_{A_1 \ldots A_m}((E_1 \bowtie E_2)) \equiv (\Pi_{A_1 \ldots A_m}(E_1)) \bowtie (\Pi_{A_1 \ldots A_m}(E_2)) \)

4. Cluster rule of \(\times \): \(\Pi_{A_1 \ldots A_m}(E_1 \times E_2) \equiv (\Pi_{A_1 \ldots A_m}(E_1)) \times (\Pi_{A_1 \ldots A_m}(E_2)) \)

5. Exchange rule of \(\bowtie / \times \) for \(\cap / \cup \)

6. If the attributes in \(F \) are all the attributes in \(E_1 \), then \(\sigma_{F_1}(E_1 \times E_2) \equiv \sigma_{F_1}(E_1) \times E_2 \)

(3) The general procedure of algebra optimization please refer to p118.
5.3 Transform Global Queries into Fragment Queries

- Methods:
 - For horizontal fragmentation: \(R = R_1 \cup R_2 \cup \ldots \cup R_n \)
 - For vertical fragmentation: \(S = S_1 \bowtie S_2 \bowtie \ldots \bowtie S_n \)
 - Transform the global relation in query expression with the above.
 - Transform the canonical expression with the equivalent transform rules introduced above. Principles:
 1) Push down the unary operations as low as possible
 2) Look for and combine the common sub-expression
 - Definition: the sub-expression which occurs more than once in the same query expression. If find this kind of sub-expression and compute it only once, it will promote query efficiency.

\[R \bowtie R \equiv R \]
\[R \cup \sigma F(R) \equiv \sigma F(R) \]
\[\sigma F_1 \bowtie \sigma F_2(R) \equiv \sigma F_1 \land F_2(R) \]

3) Find and eliminate the empty sub-expression

Example:
\[\sigma \text{deptnum}=1 \]
\[\sigma \text{deptnum}=1 \]

4) Eliminate useless vertical fragments

\[\Pi_{A} \sigma_{F}(R) \subseteq \Pi_{R} \sigma_{F}(R) \]

5.4 Query Decomposition

- General method:
 1) combine the same leaves in the query tree
 2) combine the middle nodes corresponding to the same operation with the same operands.
- Example: \(\Pi_{\text{emp.name}}(\text{emp} \bowtie (\sigma_{\text{mgrnum}=373} \text{dept}) - (\sigma_{\text{sub}=35000} \text{emp} \bowtie (\sigma_{\text{mgrnum}=373} \text{dept})) \)

\[\Pi_{\text{name, deptnum}}(\text{name, deptnum}) \]

Notice: The last query tree is which can be given by an expert at first. The goal of algebra optimization is to optimize the query expression which is not submitted in best form at first.
Decomposition method:
Traverse the query tree in post-order, until \(j \) becomes 2, then get the first sub-tree. The rest may be deduced by analogy, so we can get all of the sub-trees.

![Query Tree Diagram](image.png)

5.5 The Optimization of Binary Operations

The executions of local sub-queries are responsible by local DBMS. The query optimization of DDBMS is responsible for the global optimization, that is, the execution of assembling tree.

Because the executions of unary operations are responsible by local DBMS after algebra optimization and query decomposition, the global optimization of DDBMS only need to consider the binary operations, mainly the join operation.

How to find a “good” access strategy to compute the query improved by algebra optimization is introduced in this section.

I. Main problems in global optimization

1) Materialization: select suitable copies of fragments which involved in the query

2) Strategies for join operation

 - Direct join
 - Use of semi_join

3) Select execution of each operation (mainly to direct join)

II. Three general optimization methods:

1) By cost comparison (also called exhaustive search)
2) By heuristic rule: generally used in small systems.
3) Combination of 1, 2: eliminate the solutions unsuitable obviously by using 2 to reduce solution space, then use 1 to compare cost of the rest solutions carefully.

III. Cost estimation

Total query cost = Processing cost + Transmission cost
According to different environment:
- For wide area network: the transfer rate is about 100bps~50Kbps, far slow than processing speed in computer, so *Processing cost* can be omitted.
- For local area network: the transfer rate will reach 1000Mbps, both items should be considered.

I. Transmission cost
\[TC(x) = C_0 + C_1x \]
- \(x \): the amount of data transferred; \(C_0 \): cost of initialization; \(C_1 \): cost of transferring one data unit on network. \(C_0, C_1 \) rely on the features of the network used.

II. Comments on semi_join
- RED(Q, R): A set of all reducer programs for R in query Q.
- Full reducer: the reducer which conforms to the following conditions:
 1) \(Q \in \text{RED}(Q, R) \)
 2) reduce R mostly
- But full reducer is not the target which should be pursued in query optimization. example: 1 Q is a query with qualification:
\[
\]

Define: A chain of semi_join to reduce R is called reducer program for R.
Query graph:

\[
\begin{array}{c}
R_1 \\
R_2 \\
R_3 \\
R_4 \\
R_5 \\
R_6 \\
R_7
\end{array}
\]

Link the two relations with a line if there is \(\bowtie \) between them, then we can get the query graph. The query whose query graph like the left graph is called tree query (TQ).

Example 2: \(q = (R_1.A=R_2.B) \land (R_2.C=R_3.D) \land (R_5.E=R_7.F) \)

The query whose query graph like the left graph is called cyclic query (CQ).

Example 3: \(q = (R_1.A=R_2.B) \land (R_2.B=R_3.C) \land (R_3.C=R_1.A) \)

This is a TQ, not a CQ, because \(R_3.C=R_1.A \) can be obtained from transfer relation, it is not a independent condition.

Can be proved:

1) Full reducer exists for TQ.
2) No full reducer exists for CQ in many cases.

\[
\begin{array}{ccc}
R_1 & A & B \\
R_2 & C & D \\
R_3 & E & F
\end{array}
\]

Even if the result of this query is empty, the size of any one of \(R_1, R_2 \) and \(R_3 \) can not be decreased through \(\bowtie \). So there is not full reducer for this query.

Another example about full reducer of CQ

\[
\begin{array}{ccc}
R & A & B \\
1 & a & x \\
2 & b & y \\
3 & c & z
\end{array}
\]

\[
\begin{array}{ccc}
S & B & C \\
2 & b & y \\
3 & c & z
\end{array}
\]

\[
\begin{array}{ccc}
T & C & A \\
3 & y & 3 \\
4 & z & 4
\end{array}
\]

\(q = (R.B=S.B) \land (S.C=T.C) \land (T.A=R.A) \), is there full reducer?

\[
\begin{array}{ccc}
R' & A & B \\
2 & b \\
3 & c
\end{array}
\]

\[
\begin{array}{ccc}
S' & B & C \\
2 & b & y \\
3 & c & z
\end{array}
\]

\[
\begin{array}{ccc}
T' & C & A \\
3 & y & 3
\end{array}
\]

Conclusion:

- For CQ: there is no full reducer in general. Even if there is, its length increases linearly along with the number of tuples of some relation in the query. (about \(3(m-1) \))
- For TQ: the length of full reducer < \(n-1 \) (\(n \) is the number of nodes in the query graph).
- So the full reducer can not be the optimization target when execute join operation under distributed environment through \(\bowtie \).

SDD-1 Algorithm: heuristic rule (p189~190)

5.7 Direct Join

--- Implementation method of join operation in \(R^* \)

I. Two basic implementation method of join operation

- Nested Loop: the extension of corresponding algorithm in centralized DBMS

 \[
 \text{cost} = (b_R + b_S/(n_B - 1)) * b_T \cdot D_0
 \]

- Merge Scan: the extension of corresponding algorithm in centralized DBMS

 \[
 \text{cost} = (b_R + b_S) \cdot D_0 + \text{Cost}_{scan}(R) + \text{Cost}_{scan}(S)
 \]

II. Transmission of relations in these two methods

1) "shipped whole": The whole relation is shipped without selections.
 - For I, a temporary relation is established at the destination site for further use.
 - For O, the relation doesn’t need storing.
2) "Fetch as need": The whole relation is not shipped.
 - The tuples needed by the remote site are sent at its request. The request message usually contains the value of join attribute.
 - Usually there is an index on the join attribute at the requested site.
III. Six implementation strategies of join in R*

- Nested Loop
 - O: shipped whole
 - I: fetch as needed

- Merge Scan
 - O: shipped whole
 - I: shipped whole
 - fetch as needed

- Shipping whole O and I to a 3rd site (NL or MS)
 - It is obvious that O should be shipped whole.
 - In NL, if I is shipped whole, index can’t be shipped along with it, moreover temporary relation is required. Both processing cost and storage cost are high.

Six strategies don’t include:
- Multiple join — transformed into multi binary joins.
- Copy selection — because R* doesn’t support multi copies.

5.8 Distributed Grouping & Aggregate Function Evaluation

```sql
SELECT PNUM, SUM(QUAN)
FROM SP
GROUP BY PNUM;
```

That is: $GB_{\text{PNUM, SUM(QUAN)}}$ SP

There are the following conclusions about grouping & aggregate function evaluation in distributed computing environment:

1. Suppose G_i is a group gotten through grouping to $R_1 \cup R_2$ according to some attribute set, if $G_i \subseteq R_j \cup R_k = \Phi$ for all $i, j \neq k$ —— (SNC), then:
 - $GB_{G_i, AF}(R_1 \cup R_2) = GB_{G_i, AF}(R_1) \cup GB_{G_i, AF}(R_2)$
 - For example:
     ```sql
     SELECT SNUM, AVG(QUAN) FROM SP GROUP BY SNUM;
     ```

2. If SNC does not hold, it is still possible to compute some aggregate functions of global relation distributed

 Suppose global relation: S fragments: S_1, S_2, \ldots, S_n
 then:
 - $SUM(S) = SUM(SUM(S_1), SUM(S_2), \ldots, SUM(S_n))$
 - $COUNT(S) = SUM(COUNT(S_1), \ldots, COUNT(S_n))$
 - $AVG(S) = SUM(S)/COUNT(S)$
 - $MIN(S) = MIN(MIN(S_1), \ldots, MIN(S_n))$
 - $MAX(S) = MAX(MAX(S_1), \ldots, MAX(S_n))$

5.9 Update Strategies

The consistency between multi copies must be considered while executing update, because any data may have multi copies in DDB.

1. Updating all strategy
 - The update will fail if any one of copies is unavailable.
 - p —— probability of availability of a copy.
 - n —— No. of copies
 - The probability of success of the update $= p^n$

 $$\lim_{n \to \infty} p^n = 0$$

2. Updating all available sites immediately and keeping the update data at spooling site for unavailable sites, which are applied to that site as soon as it is up again.

3. Primary copy updating strategy
 - Assign a copy as primary copy. The remaining copies called secondary copies.
 - Update : update P.C, then P.C broadcast the update to S.Cs at sometimes.
 - P.C maybe inconsistent with S.C temporarily. There is no problem if the next operation is still update. While if the next operation is a read to some S.C, then:
Compare the version No. of S.C with that of P.C, if version No. are equal, read S.C directly; else:
(1) redirect the read to P.C
(2) wait the update of S.C

4) Snapshot
Snapshot is a kind of copy image not followed the changes in DB.
- Master copy at one site, many snapshots are distributed at other sites.
- Update: master copy only.

6. Recovery

6.1 Introduction
The main roles of recovery mechanism in DBMS are:
(1) Reducing the likelihood of failures (prevention)
(2) Recover from failures (solving)
 Restore DB to a consistent state after some failures.

- Redundancy is necessary.
- Should inspect all possible failures.
- General method:
 1) Periodical dumping
 2) Backup + Log

1) Periodical dumping
\[\text{dumping} \quad \text{dumping} \quad \text{failure} \quad t \]
Variation: Backup + Incremental dumping
I.D --- updated parts of DB
\[\text{Backup} \quad \text{I.D} \quad \text{I.D} \quad \text{failure} \quad t \]
Update lost
This method is easy to be implemented and the overhead is low, but the update maybe lost after failure occurring. So it is often used in file system or small DBMS.

2) Backup + Log
Log: record of all changes on DB since the last backup copy was made.
Change: \{ Old value (before image --- B.I) \} Recorded
\{ New value (after image --- A.I) \} into Log
For update op. : B.I \quad A.I
insert op. : ---- \quad A.I
delete op. : B.I \quad ----
\[\text{Backup} \quad \text{Log} \quad \text{failure} \quad t \]
While recovering:

- Some transactions maybe half done, should undo them with B.I recorded in Log.
- Some transactions have finished but the results have not been written into DB in time, should redo them with A.I recorded in Log.

It is possible to recover DB to the most recent consistent state with Log.

3) Multiple Copies

There are multi copies for every data object. Recovered with other copies while failure occurs. The system cannot be collapsed because of some copy’s failure.

Advantages:
1. increase reliability
2. recovery is very easy

Problems:
1. difficult to acquire independent failure modes in centralized database systems.
2. waste in storage space

So this method is not suitable for Centralized DBMS.

6.2 Transaction

A transaction T is a finite sequence of actions on DB exhibiting the following effects:

- Atomic action: Nothing or All.
- Consistency preservation: consistency state of DB → another consistency state of DB.
- Isolation: concurrent transactions should run as if they are independent each other.
- Durability: The effects of a successfully completed transaction are permanently reflected in DB and recoverable even failure occurs later.

Example: transfer money s from account A to account B

Begin transaction
read A
A:=A-s
if A<0 then Display “insufficient fund”
Rollback /*undo and terminate */
else B:=B+s
Display “transfer complete”
Commit /*commit the update and terminate */

Rollback --- abnormal termination. (Nothing)
Commit --- normal termination. (All)

6.3 Some Structures to Support Recovery

Recovery information (such as Log) should be stored in nonvolatile storage. The following information need to be stored in order to support recovery:
1. Commit list : list of TID which have been committed.
2. Active list : list of TID which is in progress.
3. Log :

 After image
 ![Diagram]

 Before image
 ![Diagram]

The reliability demand of Log is higher than general data, often doubled. If the interval between two dumps is too long, lack of storage space may occur because of the accumulation of Log. Solutions:
1. Free the space after commit. It will be impossible to recover from disk failure in this situation.
2. Periodically dump to tape.
3. Log compression:
 - Don’t have to store Log information for aborted transactions
 - B.I are no longer needed for committed transactions
 - Changes can be consolidated, keep the newest A.I only.
6.4 Commit Rule and Log Ahead Rule

6.4.1 Commit Rule
A.I must be written to nonvolatile storage before commit of the transaction.

6.4.2 Log Ahead Rule
If A.I is written to DB before commit then B.I must first written to log.

6.4.3 Recovery strategies
(1) The features of undo and redo (are idempotent):
undo(undo(undo(undo(x)))) = undo(x)
redo(redo(redo(redo(redo(x))))) = redo(x)

(2) Three kinds of update strategy

a) A.I→DB before commit
TID→active list
A.I→DB
commit
TID→commit list
B.I→Log (Log Ahead Rule)

b) A.I→DB after commit
TID→active list
A.I→Log (Commit Rule)
TID→commit list
A.I→DB
delete TID from active list

b) A.I→DB after commit

commit

c) A.I→DB concurrently with commit
TID→active list
A.I, B.I→Log (Two Rules)
A.I→DB (partially done)
TID→commit list
A.I→DB (completed)
delete TID from active list

The recovery after failure in this situation
Check two lists for every TID while restarting after failure:

<table>
<thead>
<tr>
<th>Commit list</th>
<th>Active list</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>undo, delete TID from active list</td>
</tr>
<tr>
<td>✓</td>
<td>delete TID from active list</td>
</tr>
<tr>
<td>✓</td>
<td>nothing to do</td>
</tr>
</tbody>
</table>

The recovery after failure in this situation
Check two lists for every TID while restarting after failure:

<table>
<thead>
<tr>
<th>Commit list</th>
<th>Active list</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>delete TID from active list</td>
</tr>
<tr>
<td>✓</td>
<td>redo, delete TID from active list</td>
</tr>
<tr>
<td>✓</td>
<td>nothing to do</td>
</tr>
</tbody>
</table>

The recovery after failure in this situation
Check two lists for every TID while restarting after failure:

<table>
<thead>
<tr>
<th>Commit list</th>
<th>Active list</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>delete TID from active list</td>
</tr>
<tr>
<td>✓</td>
<td>redo, delete TID from active list</td>
</tr>
<tr>
<td>✓</td>
<td>nothing to do</td>
</tr>
</tbody>
</table>
The recovery after failure in this situation

Check two lists for every TID while restarting after failure:

<table>
<thead>
<tr>
<th>Commit list</th>
<th>Active list</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ undo, delete TID from active list</td>
<td></td>
</tr>
<tr>
<td>✓ ✓ redo, delete TID from active list</td>
<td></td>
</tr>
<tr>
<td>✓ nothing to do</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion:

<table>
<thead>
<tr>
<th></th>
<th>redo</th>
<th>undo</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>b)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>c)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>d)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

6.5 Update Out of Place

- Keep two copies for every page of a relation
- Keep a page table (PT) for every relation
- When updating some page, produce a new page out of place, change the corresponding pointer in page table while the transaction committing, let it point to new page.

Suppose relation R has N pages, then the length of its PT is N

6.6 Recovery Procedures

Failure types:
1) Transaction failure: because of some reason beyond expectation, the transaction has to be aborted.
2) System failure: the operating system collapse, but the DB on disk is not damaged. Such as power cut suddenly.
3) Media failure: disk failure, the DB on the disk is damaged.

Solutions:
1) Transaction failure: because it must occur before committing:
 - Undo if necessary
 - Delete TID from active list

2) System failure:
 - Restore the system
 - Undo or redo if necessary
3) Media failure:
 - Load the latest dump
 - Redo according the log
6.7 System Start Up

1) Emergency restart
Start after system or media failure. Recovery is needed before start.

2) Warm start
Start after system shutdown. Recovery is not required.

3) Cold start
Start the system from scratch. Start after a catastrophic failure or start a new DB.

6.8 Two Phase Commit

- The transactions in DDBMS are distributed transactions, the key of distributed transaction management is how to assure all sub-transactions either commit together or abort together.
- Realize the sub-transactions’ harmony with each other relies on communication, while the communication is not reliable.
- Two general paradoxes: No fixed length protocol exists.
- Solution: number the messages.

A
March i
B
OK i

March i
OK i

March i
OK i
OK i

If A has not received OK i+1
1) B had not received March i+1
2) OK i+1 has been lost

If A has received, send OK i+1 again for B :
1) A send March i+1 again for B
2) or, A send OK i+1

A
March i
B
OK i

March i
OK i

March i
OK i
OK i

If A has not received OK i+1
1) B had not received March i+1
2) OK i+1 has been lost

If A has received, send OK i+1 again for B :
1) A send March i+1 again for B
2) or, A send OK i+1

7. Concurrency Control
7.1 Introduction

In multi users DBMS, permit multi transaction access the database concurrently.

7.1.1 Why concurrency?
1) Improving system utilization & response time.
2) Different transaction may access to different parts of database.

7.1.2 Problems arise from concurrent executions

1) Improving system utilization & response time.
2) Different transaction may access to different parts of database.

7.1.3 Serialization --- the criterion for concurrency consistency

Definition: suppose \(\{T_1, T_2, \ldots, T_n\} \) is a set of transactions executing concurrently. If a schedule of \(\{T_1, T_2, \ldots, T_n\} \) produces the same effect on database as some serial execution of this set of transactions, then the schedule is serializable.

Problem: different schedule \(\rightarrow \) different equivalent serial execution \(\rightarrow \) different result? (yes, \(n! \))

Example Schedules

- Let \(T_1 \) transfer $50 from A to B, and \(T_2 \) transfer 10% of the balance from A to B. The following is a serial schedule, in which \(T_1 \) is followed by \(T_2 \).

Example Schedules

- Let \(T_1 \) and \(T_2 \) be the transactions defined previously. The following schedule is not a serial schedule, but it is equivalent to the above.

7.1.4 View equivalent and conflict equivalent

- Schedules --- sequences that indicate the chronological order in which instructions of concurrent transactions are executed
 - a schedule for a set of transactions must consist of all instructions of those transactions
 - must preserve the order in which the instructions appear in each individual transaction.

Example Schedules

- Let \(T_1 \) and \(T_2 \) be the transactions defined previously. The following schedule is not a serial schedule, but it is equivalent to the above.

Example Schedules

- Let \(T_1 \) and \(T_2 \) be the transactions defined previously. The following schedule is not a serial schedule, but it is equivalent to the above.
View equivalent and Conflict equivalent

- Let S and S’ be two schedules with the same set of transactions. S and S’ are view equivalent if they produce the same effect on database based on the same initial execution condition.
- Conflict operations: R-W, W-W. The sequence of conflict operation will affect the effect of execution.
- Non-conflicting operations: R-R. Even if there are write operation, the data items operated are different. Such as R_i(x) and W_j(y).
- If a schedule S can be transformed into a schedule S’ by a series of swaps of non-conflicting operations, we say that S and S’ are conflict equivalent.

Property: if schedule S and S’ are conflict equivalent, they must be view equivalent. It is not right contrarily.

- Serialization can be divided into view serialization and conflict serialization.

7.1.5 Preceding graph

Directed graph G = <V,E>
V --- set of vertexes, including all transactions participating in schedule.
E --- set of edges, decided through the analysis of conflict operations. If any of the following conditions is fulfilled, add an edge T_i→T_j into E:
- R_i(x) precedes W_j(x)
- W_i(x) precedes R_j(x)
- W_i(x) precedes W_j(x)

Finally, check if there is cycle in the preceding graph. If there is cycle in it, the schedule is not serializable, or it is serializable.

Find equivalent serial execution while serialization

1. Because there is no cycle, there must be some vertexes whose in-degree is 0. Remove these vertexes and relative edges from the preceding graph, and store these vertexes into a queue.
2. Process the left graph in the same way as above, but the vertexes removed should be stored behind the existing vertexes in the queue.
3. Repeat 1 and 2 until all vertexes moved into the queue.

Example: for schedule s on {T_1, T_2, T_3, T_4}, suppose: s = W_i(y)R_i(x)W_j(y)W_k(x)W_l(z)R_m(z)W_n(x)
Is it serializable? Find out the equivalent serial execution if it is.

The commission of concurrency control is to enforce the concurrent transactions executed in a serializable schedule.
7.2 Locking Protocol

Locking method is the most basic concurrency control method. There may be many kinds of locking protocols.

7.2.1 X locks

Only one type of lock, for both read and write.

Compatibility matrix:

<table>
<thead>
<tr>
<th></th>
<th>NL</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>X</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>X</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>X</td>
<td>N</td>
</tr>
</tbody>
</table>

Conclusions:

1) Well-formed + 2PL: serializable
2) Well-formed + 2PL + unlock update at EOT: serializable and recoverable (without domino phenomena)
3) Well-formed + 2PL + holding all locks to EOT: strict two phase locking transaction.

7.2.2 (S,X) locks

S lock --- if read access is intended.
X lock --- if update access is intended.

7.2.3 (S,U,X) locks

U lock --- update lock. For an update access the transaction first acquires a U-lock and then promote it to X-lock.

Purpose: shorten the time of exclusion, so as to boost concurrency degree, and reduce deadlock.

7.3 Deadlock & Live Lock

Deadlock: wait in cycle, no transaction can obtain all of resources needed to complete.
Live lock: although other transactions release their resource in limited time, some transaction can not get the resources needed for a very long time.

7.3.1 Deadlock Detection

1) Timeout: If a transaction waits for some specified time then deadlock is assumed and the transaction should be aborted.
2) Detect deadlock by wait-for graph G=<V,E>

V: set of transactions \(\{T_1, T_2, \ldots, T_n\} \)
E: \(\{T_i, T_j\} \) if \(T_i \) waits for \(T_j \) and \(T_j \) is alive

- Live lock is simpler, only need to adjust schedule strategy, such as FIFO
- Deadlock: (1) Prevention (don’t let it occur); (2) Solving (permit it occurs, but can solve it)

Two Phase Locking

- **Definition 1:** In a transaction, if all locks precede all unlocks, then the transaction is called two phase transaction. This restriction is called two phase locking protocol.
- **Definition 2:** In a transaction, if it first acquires a lock on the object before operating on it, it is called well-formed.

Theorem: If S is any schedule of well-formed and two phase transactions, then S is serializable. (proving is on p151)

Conclusions:

1) Well-formed + 2PL: serializable
2) Well-formed + 2PL + unlock update at EOT: serializable and recoverable. (without domino phenomena)
3) Well-formed + 2PL + holding all locks to EOT: strict two phase locking transaction.

7.2.2 (S,X) locks

S lock --- if read access is intended.
X lock --- if update access is intended.

Conclusions:

- Well-formed + 2PL: serializable
- Well-formed + 2PL + unlock update at EOT: serializable and recoverable. (without domino phenomena)
- Well-formed + 2PL + holding all locks to EOT: strict two phase locking transaction.

7.2.3 (S,U,X) locks

U lock --- update lock. For an update access the transaction first acquires a U-lock and then promote it to X-lock.

Purpose: shorten the time of exclusion, so as to boost concurrency degree, and reduce deadlock.

Conclusions:

1) Well-formed + 2PL: serializable
2) Well-formed + 2PL + unlock update at EOT: serializable and recoverable. (without domino phenomena)
3) Well-formed + 2PL + holding all locks to EOT: strict two phase locking transaction.

Theorem: If S is any schedule of well-formed and two phase transactions, then S is serializable. (proving is on p151)

Conclusions:

1) Well-formed + 2PL: serializable
2) Well-formed + 2PL + unlock update at EOT: serializable and recoverable. (without domino phenomena)
3) Well-formed + 2PL + holding all locks to EOT: strict two phase locking transaction.

Theorem: If S is any schedule of well-formed and two phase transactions, then S is serializable. (proving is on p151)

Conclusions:

1) Well-formed + 2PL: serializable
2) Well-formed + 2PL + unlock update at EOT: serializable and recoverable. (without domino phenomena)
3) Well-formed + 2PL + holding all locks to EOT: strict two phase locking transaction.
What to do when detected?
1) Pick a victim (youngest, minimum abort cost, …)
2) Abort the victim and release its locks and resources
3) Grant a waiter
4) Restart the victim (automatically or manually)

7.3.2 Deadlock avoidance
1) Requesting all locks at initial time of transaction.
2) Requesting locks in a specified order of resource.
3) Abort once conflicted.
4) Transaction Retry

Every transaction is uniquely time stamped. If T_A requires a lock on a data object that is already locked by T_B, one of the following methods is used:

a) Wait-die: T_A waits if it is older than T_B, otherwise it “dies”, i.e. it is aborted and automatically retried with original timestamp.
b) Wound-wait: T_A waits if it is younger than T_B, otherwise it “wound”. T_B is aborted and automatically retried with original timestamp.

In above, both have only one direction wait, either older \rightarrow younger or younger \rightarrow older. It is impossible to occur wait in cycle, so the dead lock is avoided.

7.4 Lock Granularities

7.4.1 Locking in multi granularities
To reduce the overhead of locking, the lock unit should be the bigger, the better. To boost the concurrency degree of transactions, the lock unit should be the smaller, the better.

In large scale DBMS, the lock unit is divided into several levels: DB - File - Record - Field.

In this situation, if a transaction acquires a lock on a data object of some level then it acquires implicitly the same lock on each descendant of that data object.

So, there are two kinds of locks in multi granularity lock method:
- Explicit lock
- Implicit lock

7.4.2 Intention lock

How to check conflicts on implicit locks?

Intention lock: provide three kinds of intension locks which are IS, IX and SIX. For example, if a transaction adds a S lock on some lower level data object, all the higher level data object which contains it should be added an IS lock as a warning information. If another transaction want to apply an X lock on a higher level data object later, it can find the implicit conflict through IS lock.

- IS --- Intention share lock
- IX --- Intention exclusive lock
- SIX --- S + IX

Compatibility matrix while lock in multi granularities :

<table>
<thead>
<tr>
<th></th>
<th>NL</th>
<th>IS</th>
<th>IX</th>
<th>S</th>
<th>SIX</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>IS</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>IX</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>S</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>SIX</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

The lock with strong exclusion degree can substitute the lock with weak exclusion degree while locking, but it is not right contrarily.

Locking Rules:

- Locks are requested from root to leaves and released from leaves to root.

Example:

<table>
<thead>
<tr>
<th>Locking order</th>
<th>Locking order</th>
</tr>
</thead>
<tbody>
<tr>
<td>record</td>
<td>DB</td>
</tr>
<tr>
<td>file</td>
<td>file</td>
</tr>
<tr>
<td>S</td>
<td>IS</td>
</tr>
<tr>
<td>IX</td>
<td>IX</td>
</tr>
<tr>
<td>SIX</td>
<td>IS</td>
</tr>
<tr>
<td>Field</td>
<td>Field</td>
</tr>
</tbody>
</table>

Request X lock to records needing updating Substitute with stronger exclusive lock

(1) S
(2) IX
(3) All read and some write

The lock with strong exclusion degree can substitute the lock with weak exclusion degree while locking, but it is not right contrarily.
7.5 Locking on Index (B+ Tree)

- Transactions access concurrently not only the data in DB, but also the indexes on these data, and apply operations on indexes, such as search, insert, delete, etc. So indexes also need concurrency control while multi granularity locking is supported.
- How can we efficiently lock a particular leaf node?
 - Btw, don’t confuse this with multiple granularity locking!
 - One solution: Ignore the tree structure, just lock pages while traversing the tree, following 2PL.
 - This has terrible performance!
 - Root node (and many higher level nodes) become bottlenecks because every tree access begins at the root.

Some Useful Observations

- Originally, locks on index are only used to keep the consistency of index itself. The correctness of concurrent transactions is responsible by 2PL. From this sense, the locks on index don’t need keeping to EOT, they can release immediately after finish the mapping from attribute value to tuples’ addresses. But in 7.6 we will know, even the strict 2PL has leak while multi granularity locks are permitted. The lock on leaf of B+ tree should be kept to EOT in order to make up the leak of strict 2PL in this situation, while locks on other nodes of the tree can be released after finishing of search.

Tree Locking Algorithm

1. While traversing, apply S lock on root first, then apply S lock on the child node selected. Once get S lock on the child, the S lock on parent can be released, because traversing can’t go back. Search like this until arrive leaf node. After traversing, only S lock on wanted leaf is left. Keep this S lock till EOT.
2. While inserting new index item, traverse first, find the leaf node where the new item should be inserted in. Apply X lock on this leaf node.
 - If it is not full, insert directly.
 - If it is full, split node according to the rule of B+ tree. While splitting, besides the original leaf, the new leaf and their parent should add X lock. If parent is also full, the splitting will continue.
 - In every splitting, must apply X lock on each node to be changed. These X locks can be released when the changes are finished.
 - After the all inserting process is completed, the X lock on leaf node is changed to S lock and kept to EOT.

3. While deleting an index item from the tree, the procedure is similar as inserting. Deleting may cause the combination of nodes in B+ tree. The node changed must be X locked first and X lock released after finishing change. The X lock on leaf node is also changed to S lock and kept to EOT.
7.6 Phantom and Its Prevention

- The assumption that the DB is a fixed collection of objects is not true when multi granularity locking is permitted. Then even Strict 2PL will not assure serializability:
 - T1 locks all pages containing sailor records with rating = 1, and finds oldest sailor (say, age = 71).
 - Next, T2 inserts a new sailor; rating = 1, age = 96.
 - T2 also deletes oldest sailor with rating = 2 (and, say, age = 80), and commits.
 - T1 now locks all pages containing sailor records with rating = 2, and finds oldest (say, age = 63).
 - No consistent DB state where T1 is “correct”!

- The assumption that the DB is a fixed collection of objects is not true when multi granularity locking is permitted. Then even Strict 2PL will not assure serializability:
 - T1 implicitly assumes that it has locked the set of all sailor records with rating = 1.
 - Assumption only holds if no sailor records are added while T1 is executing!
 - Need some mechanism to enforce this assumption. (Index locking and predicate locking)

- Example shows that conflict serializability guarantees serializability only if the set of objects is fixed!

- If the system don’t support multi granularity locking, or even if support multi granularity locking, the query need to scan the whole table and add S lock on the table, then there is not this problem. For example: select s#, average(grade) from SC group by s#;

Index Locking

- If there is a dense index on the rating field, T1 should lock the index node containing the data entries with rating = 1 and keep it until EOT.
- If there are no records with rating = 1, T1 must lock the index node where such a data entry would be, if it existed!
- When T2 wants to insert a new sailor (rating = 1, age = 96), he can’t get the X lock on the index node containing the data entries with rating = 1, so he can’t insert the new index item to realize the insert of a new sailor.
- If there is no suitable index, T1 must lock the whole table, no new records can be added before T1 commit of course.

Predicate Locking

- Grant lock on all records that satisfy some logical predicate, e.g. age > 2*salary.
- Index locking is a special case of predicate locking for which an index supports efficient implementation of the predicate lock.
- What is the predicate in the sailor example?
- In general, predicate locking has a lot of locking overhead. It is almost impossible to realize it.

Predicate Locking

<table>
<thead>
<tr>
<th>Isolation Level</th>
<th>Possible results</th>
<th>Phantom Problem</th>
<th>Lock demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Uncommitted</td>
<td>Maybe</td>
<td>Maybe</td>
<td>No lock when read; X lock when write, keep until EOT</td>
</tr>
<tr>
<td>Read Committed</td>
<td>No</td>
<td>Maybe</td>
<td>S lock when read, release after read; X lock when write, keep until EOT</td>
</tr>
<tr>
<td>Repeatable Reads</td>
<td>No</td>
<td>No</td>
<td>According to Strict 2PL</td>
</tr>
<tr>
<td>Serializable</td>
<td>No</td>
<td>No</td>
<td>Strict 2PL and keep S lock on leaf of index until EOT</td>
</tr>
</tbody>
</table>

Example:

```
SET TRANSACTION READ ONLY
ISOLATION LEVEL REPEATABLE READ;
```

```
SET TRANSACTION ISOLATION LEVEL
{ READ COMMITTED / READ UNCOMMITTED / REPEATABLE READ / SERIALIZABLE }
```
7.8 Lock Mechanism in OODBMS

1. Lock granularity: object is the smallest lock granularity in OODB generally. DB - Class - Object
2. Single level locking: lock the object operated with S or X lock directly. Suitable for the OODBMS faced to CAD application, etc. not suitable for the application occasion in which association queries are often.
3. Multi granularity lock: use S, X, IS, IX, SIX locks introduced in last section. It is a typical application of multi granularity lock. But in this situation, the class level lock can only lock the objects directly belong to this class, can not include the objects in its child classes. So it is not suitable for cascade queries on inheriting tree or schema update.
4. Complex multi granularity lock: two class hierarchy locks are added.

- RL: add a S lock at a class and all of its child classes
- WL: add a X lock at a class and all of its child classes

<table>
<thead>
<tr>
<th></th>
<th>NL</th>
<th>IS</th>
<th>IX</th>
<th>S</th>
<th>SIX</th>
<th>X</th>
<th>RL</th>
<th>WL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>IS</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>IX</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>S</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>SIX</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>RL</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>WL</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Locking steps of RL(WL) locks:

1. Add IS(IX) lock on any super class chain of this class and DB
2. Add RL(WL) on this class
3. Check top-down if there is lock conflicting with RL(WL) on the child classes of this class. If there is no conflict, add a RL(WL) lock on the child class who has multi parents met first.
4. If find any conflict in above, the lock application fail.
5. Locking complex object: lock referred object only when accessed (according to general multi granularity lock protocol)

7.9 The Time Stamp Method

1. T.S: A number generated by computer’s internal clock in chronological order.
2. T.S for a transaction: the current T.S when the transaction initials.
3. T.S for an object:
 1. Read time (tr) — highest T.S possessed by any transaction to have read the object.
 2. Write time (tw) — highest T.S possessed by any transaction to have written the object.
4. The key idea of T.S method is that the system will enforce the concurrent transactions to execute in the schedule equivalent with the serial execution according to T.S order.

Read/Write operations under T.S method

1. Let R — a data object with T.S tr and tw.
 T — a transaction with T.S t.

 Transaction T reads R:
 - read R
 - if (t >= tw)
 - then /* OK */
 - tr = Max (tr, t)
 - else /* a transaction younger than T has already write R ahead of T, conflict */
 - restart T with a new T.S

 Transaction T writes R:
 - if (t >= tr)
 - then if (t >= tw)
 - then /* OK */
 - write R
 - tw = t
 - else /* tr <= t < tw */
 - do nothing
 - else /* a transaction younger than T has already read R ahead of T, conflict */
 - restart T with a new T.S

No other reads
Remarks:

1. Compared with lock method, the most obvious advantage is that there is no dead lock, because of no wait.
2. Disadvantage: every transaction and every data object has T.S, and every operation need to update tr or tw, so the overhead of the system is high.
3. Solution:
 - Enlarge the granularity of data object added T.S. (Low concurrency degree)
 - T.S of data object are not actually stored in nonvolatile storage but in main memory and preserved for a specified time and the T.S of data objects whose T.S is not in main memory are assumed to be zero.

7.10 Optimistic Concurrency Control Method

The key idea of optimistic method is that it supposes there is rare conflict when concurrent transactions execute. It doesn't take any check while transactions are executing. The updates are not written into DB directly but stored in main memory, and check if the schedule of the transaction is serializable when a transaction finishes. If it is serializable, write the updating copies in main memory into DB; Otherwise, abort the transaction and try again.

The lock method and time stamp method introduced above are called "pessimistic method".

Three phases of transaction execution:

1. **Read phase:** read data from database and execute every kind of processing, but update operations only form update copies in memory.
2. **Validate phase:** check if the schedule of the transaction is serializable.
3. **Write phase:** if pass the check successfully, write the update copies in memory into DB and commit the transaction; Or throw away the update copies in memory and abort the transaction.

Information must be reserved:

1. Read set of each transaction
2. Write set of each transaction
3. The start and end time of each phase of each transaction

Checking method while transaction ends:

When transaction T_i ends, only need to check if there is conflict among T_i and the transactions which have committed and other transactions which are also in checking phase. The transactions which are in read phase don't need to be considered.

Suppose T_j is any transaction which has committed or is being checked, T_i passes the check if it fulfills one of the following conditions for all T_j:

1. T_j had finished write phase when T_i began read phase, $T_j \rightarrow T_i$
2. The intersection of T_i's read set and T_j's write set is empty, and T_i began write phase after T_j finished write phase.
3. Both T_j's read set and write set don't intersect with T_i's write set.
4. There is not any access conflict between T_i and T_j.

7.11 Locking in DDBMS

The concurrency control in DDBMS is the same as that in centralized DBMS, demand concurrent transactions to be scheduled serializably. The problems in DDBMS are:

- **Multi_copy**
- **Communication overhead**

7.11.1 write lock all, read lock one

- Read R --- S_lock on any copy of R
- Write R---X_lock all copies of R
- Hold the locks to EOT

Communication overhead: suppose n—No. of copies...
7.11.2 Majority locking
- Read R --- S_lock on a majority of copies of R
- Write R --- X_lock on a majority of copies of R
- Hold the locks to EOT

Communication overhead: Majority --- \(\frac{n+1}{2} \)

- Write: \(n \) lock MSG
 - \(n \) lock grants
 - \(n \) update MSG
 - \(n \) ACK
 - [\(n \) unlock MSG]

- Read: 1 lock MSG
 - 1 lock grants
 - 1 read MSG

\(4n \)

7.11.3 k-out-of-n locking
- Write R --- X_lock on k copies of R, \(k > \frac{n}{2} \)
- Read R --- S_lock on n-k+1 copies of R
- Hold the locks to EOT

- For read-write conflict: \(k+(n-k+1)>n \), so the conflict can be found on at least one copy.
- For write-write conflict: \(2k > n \), so it is also sure that the conflict can be detected.

The above two methods are the special situations of it:
- 7.11.1 is \(k = n \); 7.11.2 is \(k = \frac{n+1}{2} \)
- \(k \) can be changed between \(\frac{n+1}{2} \) ~ \(n \), the bigger of \(k \), the better for read operations.

7.11.4 Primary Copy Method
R --- data object
Assign the lock responsibility for locking R to a given site. This site is called primary site of R.

Communication overhead:
- Write: 1 lock MSG
 - 1 lock grants
 - \(\frac{n+1}{2} \) update MSG
 - \(n \) ACK

- Read: 1 lock MSG
 - 1 lock grants
 - 1 read MSG

\(2n+1 \)

It is efficient but liable to fail, so there are many variations. It is often used together with primary copy updating strategy (see 5.9).

7.11.5 Global Deadlock
- Suppose both \(T_A \) and \(T_B \) are distributed transactions, and have two sub transactions on site A and B respectively.
- \(T_{A3} \) and \(T_{B3} \) must commit simultaneously
- \(T_{A4} \) and \(T_{B4} \) must commit simultaneously

The above shows a global dead lock. How to find out this kind of dead lock?

Global wait-for graph: add EXT nodes based on general wait-for graph. If transaction \(T \) is a distributed transaction, and has sub transactions on other sites, and \(T \) is the head of wait-for chain of current site; add EXT --- T into the graph; if \(T \) is the tail of wait-for chain of current site, add T --- EXT into the graph.

Processing method of global wait-for graph:
If on some site has: EXT --- \(T_1 \), \(T_2 \), ..., \(T_N \) --- EXT
1. Check other sites if has: EXT --- \(T_2 \), ..., \(T_N \) --- EXT
2. if \(T_1 = T_i \) : global deadlock is detected.
 - \(T_i \neq T_1 \) : merge two wait-for graphs.
 - EXT --- \(T_1 \), ..., \(T_i \), ..., \(T_N \) --- EXT
 - Repeat step 1 and 2, check if \(T_2 \) will result in global deadlock, the condition in 2 is true. If wait-for graph on all sites have been check like above and no global cycle is found, no global deadlock occur.
7.12 Time Stamp Technique in DDBMS

7.12.1 global time stamp
- To keep the uniqueness of transaction time stamp in the whole distributed system, define a global time stamp:
 \[\text{Global T.S} = \text{Local T.S} + \text{Site ID} \]
- The clock on different site maybe different. It is not important. The key is to assure:
 time of receipt \(\geq\) time of delivery
- Solution: \(t_{\text{at receipt site}} := \max(t_1, t_2)\)
 \(t_1\)---current T.S at receipt site
 \(t_2\)---T.S of MSG

7.12.2 Read and write operations
1) Write---update \(t_w\) of all copies.
2) Read ---update \(t_r\) of the copy read.
3) When writing we check T.S of all copies. If \(t < t_r\) or \(t < t_w\) for any copy the transaction should be aborted. When reading we check T.S of the copy read. If \(t < t_w\) the transaction should be aborted.