Analysis Of Binomial Heaps

<table>
<thead>
<tr>
<th>operation</th>
<th>Leftist trees</th>
<th>Binomial heaps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>Amortized</td>
</tr>
<tr>
<td>Insert</td>
<td>O(log n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Remove min (or max)</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Meld</td>
<td>O(log n)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
Operations

• Insert
 ▪ Add a new min tree to top-level circular list.

• Meld
 ▪ Combine two circular lists.

• Remove min
 ▪ Pairwise combine min trees whose roots have equal degree.
 ▪ $O(\text{MaxDegree} + s)$, where s is number of min trees following removal of min element but before pairwise combining.
Binomial Trees

- B_k, $k > 0$, is two B_{k-1}s.
- One of these is a subtree of the other.
All Trees In Binomial Heap Are Binomial Trees

- Initially, all trees in system are Binomial trees (actually, there are no trees initially).
- Assume true before an operation, show true after the operation.
- Insert creates a B_0.
- Meld does not create new trees.
- Remove Min
 - Reinserted subtrees are binomial trees.
 - Pairwise combine takes two trees of equal degree and makes one a subtree of the other.
Complexity of Remove Min

• Let n be the number of operations performed.
 ▪ Number of inserts is at most n.
 ▪ No binomial tree has more than n elements.
 ▪ MaxDegree $\leq \log_2 n$.
 ▪ Complexity of remove min is $O(\log n + s) = O(n)$.
Aggregate Method

• Get a good bound on the cost of every sequence of operations and divide by the number of operations.
• Results in same amortized cost for each operation, regardless of operation type.
• Can’t use this method, because we want to show a different amortized cost for remove mins than for inserts and melds.
Aggregate Method – Alternative

• Get a good bound on the cost of every sequence of remove mins and divide by the number of remove mins.

• Consider the sequence `insert, insert, …, insert, remove min`.
 - The cost of the remove min is $O(n)$, where n is the number of operations in the sequence.
 - So, amortized cost of a remove min is $O(n/1) = O(n)$.
Accounting Method

- Guess the amortized cost.
 - Insert \Rightarrow 2.
 - Meld \Rightarrow 1.
 - Remove min \Rightarrow $3\log_2 n$.
- Show that $P(i) - P(0) \geq 0$ for all i.
Potential Function

- \(P(i) = \text{amortizedCost}(i) - \text{actualCost}(i) + P(i - 1) \)
- \(P(i) - P(0) \) is the amount by which the first \(i \) operations have been over charged.
- We shall use a credit scheme to keep track of (some of) the over charge.
- There will be 1 credit on each min tree.
- Initially, \#trees = 0 and so total credits and \(P(0) = 0 \).
- Since number of trees cannot be <0, the total credits is always \(\geq 0 \) and hence \(P(i) \geq 0 \) for all \(i \).
Insert

- Guessed amortized cost = 2.
- Use 1 unit to pay for the actual cost of the insert.
- Keep the remaining 1 unit as a credit.
- Keep this credit with the min tree that is created by the insert operation.
- Potential increases by 1, because there is an overcharge of 1.
Meld

- Guessed amortized cost = 1.
- Use 1 unit to pay for the actual cost of the meld.
- Potential is unchanged, because actual and amortized costs are the same.
Remove Min

- Let MinTrees be the set of min trees in the binomial heap just before remove min.
- Let u be the degree of min tree whose root is removed.
- Let s be the number of min trees in binomial heap just before pairwise combining.
 - $s = \#\text{MinTrees} + u - 1$
- Actual cost of remove min is $\leq \text{MaxDegree} + s$
 $\leq 2\log_2 n - 1 + \#\text{MinTrees}$.
Remove Min

- Guessed amortized cost = $3\log_2 n$.
- Actual cost $\leq 2\log_2 n - 1 + \#\text{MinTrees}$.
- Allocation of amortized cost.
 - Use up to $2\log_2 n - 1$ to pay part of actual cost.
 - Keep some or all of the remaining amortized cost as a credit.
 - Put 1 unit of credit on each of the at most $\log_2 n + 1$ min trees left behind by the remove min operation.
 - Discard the remainder (if any).
Paying Actual Cost Of A Remove Min

- Actual cost $\leq 2\log_2 n - 1 + \#\text{MinTrees}$

- How is it paid for?
 - $2\log_2 n - 1$ comes from amortized cost of this remove min operation.
 - $\#\text{MinTrees}$ comes from the min trees themselves, at the rate of 1 unit per min tree, using up their credits.
 - Potential may increase or decrease but remains nonnegative as each remaining tree has a credit.
Potential Method

• Guess a suitable potential function for which \(P(i) - P(0) \geq 0 \) for all \(i \).
• Derive amortized cost of \(i \)th operation using \(\Delta P = P(i) - P(i - 1) \)
 \[= \text{amortized cost} - \text{actual cost} \]
• amortized cost = actual cost + \(\Delta P \)
Potential Function

• \(P(i) = \Sigma \#\text{MinTrees}(j) \)
 - \(\#\text{MinTrees}(j) \) is \(\#\text{MinTrees} \) for binomial heap \(j \).
 - When binomial heaps \(A \) and \(B \) are melded, \(A \) and \(B \) are no longer included in the sum.

• \(P(0) = 0 \)

• \(P(i) \geq 0 \) for all \(i \).

• \(i \)th operation is an insert.
 - Actual cost of insert = 1
 - \(\Delta P = P(i) - P(i - 1) = 1 \)
 - Amortized cost of insert = actual cost + \(\Delta P \)
 \(= 2 \)
ith Operation Is A Meld

- Actual cost of meld = 1
- \(P(i) = \Sigma \#\text{MinTrees}(j) \)
- \(\Delta P = P(i) - P(i - 1) = 0 \)
- Amortized cost of meld = actual cost + \(\Delta P \) = 1
ith Operation Is A Remove Min

• old => value just before the remove min
• new => value just after the remove min.
• #MinTrees_{old}(j) => value of #MinTrees in jth binomial heap just before this remove min.
• Assume remove min is done in kth binomial heap.
ith Operation Is A Remove Min

- Actual cost of remove min from binomial heap \(k \)
 \[\leq 2 \log_2 n - 1 + \#\text{MinTrees}^{\text{old}}(k) \]
- \(\Delta P = P(i) - P(i - 1) \)
 \[= \Sigma [\#\text{MinTrees}^{\text{new}}(j) - \#\text{MinTrees}^{\text{old}}(j)] \]
 \[= \#\text{MinTrees}^{\text{new}}(k) - \#\text{MinTrees}^{\text{old}}(k). \]
- Amortized cost of remove min = actual cost + \(\Delta P \)
 \[\leq 2 \log_2 n - 1 + \#\text{MinTrees}^{\text{new}}(k) \]
 \[\leq 3 \log_2 n. \]