Advanced Data Structures

Succinct Data Structures
Arbitrary Ordered Trees

- Use parenthesis notation
- Represent the tree as the binary string $(((())())((())())())$
- Traverse tree as "(" for node, then subtrees, then ")"
- 2 Bits per node
Space for trees

• The space used by the tree structure could be the dominating factor in some applications.

 – Eg. More than half of the space used by a standard suffix tree representation is used to store the tree structure.

• Standard representations of trees support very few operations. To support other useful queries, they require a large amount of extra space.
Standard representation

Binary tree: each node has two pointers to its left and right children

An n-node tree takes $2n$ pointers or $2n \lg n$ bits

Supports finding left child or right child of a node (in constant time).

For each extra operation (eg. parent, subtree size) we have to pay, roughly, an additional $n \lg n$ bits.
Can we improve the space bound?

• There are less than 2^{2n} distinct binary trees on n nodes.

• $2n$ bits are enough to distinguish between any two different binary trees.

• Can we represent an n node binary tree using $2n$ bits?
Heap-like notation for a binary tree

Add external nodes

Label internal nodes with a 1 and external nodes with a 0

Write the labels in level order

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0

One can reconstruct the tree from this sequence

An n node binary tree can be represented in $2n+1$ bits.

What about the operations?
Heap-like notation for a binary tree

left child(\(x\)) = \([2x]\)

right child(\(x\)) = \([2x+1]\)

parent(\(x\)) = \([\lfloor x/2 \rfloor]\)

\(x \rightarrow x\): # 1’s up to \(x\)

\(x \rightarrow x\): position of \(x\)-th 1

\[
1 \ 2 \ 3 \ 4 \ \ 5 \ 6 \ 7 \ \ 8 \\
1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \\
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17
\]
Rank/Select on a bit vector

Given a bit vector B

$\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
B: & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
\end{array}$

$\text{rank}_1(i) = \# \text{ 1's up to position } i \text{ in } B$

$\text{select}_1(i) = \text{position of the } i\text{-th 1 in } B$

(similarly rank_0 and select_0)

<table>
<thead>
<tr>
<th>i</th>
<th>1's up to</th>
<th>Select</th>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Given a bit vector of length n, by storing an additional $o(n)$-bit structure, we can support all four operations in constant time.

An important substructure in most succinct data structures.

Have been implemented.
Binary tree representation

• A binary tree on \(n \) nodes can be represented using \(2n + o(n) \) bits to support:

 – parent
 – left child
 – right child

 in constant time.
• 1111011110010000000
Heap-like Notation for a Binary Tree

Add external nodes
Enumerate level by level

Store vector 11110111001000000 length $2n+1$

12345678901234567
Ordered trees

A rooted ordered tree (on n nodes):

Navigational operations:
- $\text{parent}(x) = a$
- $\text{first child}(x) = b$
- $\text{next sibling}(x) = c$

Other useful operations:
- $\text{degree}(x) = 2$
- $\text{subtree size}(x) = 4$
Ordered trees

- A binary tree representation taking $2n+o(n)$ bits that supports parent, left child and right child operations in constant time.

- There is a one-to-one correspondence between binary trees and rooted ordered trees.

- Gives an ordered tree representation taking $2n+o(n)$ bits that supports first child, next sibling (but not parent) operations in constant time.

- We will now consider ordered tree representations that support more operations.
Level-order degree sequence

Write the degree sequence in level order

3 2 0 3 0 1 0 2 0 0 0 0

But, this still requires $n \log n$ bits

Solution: write them in unary

1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0

Takes $2n-1$ bits

A tree is uniquely determined by its degree sequence
Supporting operations

Add a dummy root so that each node has a corresponding 1

\begin{align*}
1011101100111001001100000 \\
123456789101112
\end{align*}

node \(k \) corresponds to the \(k \)-th 1 in the bit sequence

\[\text{parent}(k) = \# \text{ 0’s up to the } k\text{-th 1} \]

children of \(k \) are stored after the \(k \)-th 0

supports: parent, i-th child, degree

(using rank and select)