B⁺-Trees

- Same structure as B-trees.
- Dictionary pairs are in leaves only. Leaves form a doubly-linked list.
- Remaining nodes have following structure:

 \[j \ a_0 \ k_1 \ a_1 \ k_2 \ a_2 \ \ldots \ k_j \ a_j \]

- \(j \) = number of keys in node.
- \(a_i \) is a pointer to a subtree.
- \(k_i \leq \) smallest key in subtree \(a_i \) and \(> \) largest in \(a_{i-1} \).
Example B+-tree
key = 5
6 <= key <= 20
B+-tree—Insert

Insert 10
• Insert a pair with key = 2.

• New pair goes into a 3-node.
Insert Into A 3-node

• Insert new pair so that the keys are in ascending order.

• Split into two nodes.

• Insert smallest key in new node and pointer to this new node into parent.
• Insert an index entry 2 plus a pointer into parent.
• Now, insert a pair with key = 18.
• Now, insert a pair with key $= 18$.
• Insert an index entry 17 plus a pointer into parent.
• Now, insert a pair with key = 18.
• Insert an index entry 17 plus a pointer into parent.
• Now, insert a pair with key $= 7$.
• Delete pair with key = 16.
• Note: delete pair is always in a leaf.
Delete pair with key = 16.

Note: delete pair is always in a leaf.
• Delete pair with key = 1.

• Get ≥ 1 from sibling and update parent key.
Delete

- Delete pair with key = 1.
- Get \(\geq 1 \) from sibling and update parent key.
• Delete pair with key = 2.

• Merge with sibling, delete in-between key in parent.
• Delete pair with key = 3.

• Get ≥ 1 from sibling and update parent key.
- Delete pair with key = 9.

- Merge with sibling, delete in-between key in parent.
Delete
• Delete pair with key = 6.

• Merge with sibling, delete in-between key in parent.
• Index node becomes deficient.

• Get ≥ 1 from sibling, move last one to parent, get parent key.
Delete

- Delete 9.

- Merge with sibling, delete in-between key in parent.
• Index node becomes deficient.

• Merge with sibling and in-between key in parent.
• Index node becomes deficient.

• It’s the root; discard.