B-Trees

- Large degree B-trees used to represent very large dictionaries that reside on disk.

- Smaller degree B-trees used for internal-memory dictionaries to overcome cache-miss penalties.
B-Trees

\[x \leftarrow \text{a pointer to some object} \]

DISK - READ(x)

operations that access and/or modify the fields of \(x \)

DISK - WRITE(x)

others operations that access but do not modify the fields of \(x \)
AVL Trees

- \(n = 2^{30} = 10^9 \) (approx).
- \(30 \leq \text{height} \leq 43 \).
- When the AVL tree resides on a disk, up to 43 disk access are made for a search.
- This takes up to (approx) 4 seconds.
- Not acceptable.
Red-Black Trees

- \(n = 2^{30} = 10^9 \) (approx).
- \(30 \leq \text{height} \leq 60 \).
- When the red-black tree resides on a disk, up to 60 disk access are made for a search.
- This takes up to (approx) 6 seconds.
- Not acceptable.
A Disk Page

an AVL node

Useless content

A Search Tree Node
m-way Search Trees

- Each node has up to $m - 1$ pairs and m children.
- $m = 2 \Rightarrow$ binary search tree.
4-Way Search Tree

10

10 < k < 30

30 < k < 35

k > 35
Maximum # Of Pairs

• Happens when all internal nodes are m-nodes.
• Full degree m tree.
• # of nodes = 1 + m + m^2 + m^3 + … + m^{h-1}
 = (m^h – 1)/(m – 1).
• Each node has m – 1 pairs.
• So, # of pairs = m^h – 1.
Capacity Of m-Way Search Tree

<table>
<thead>
<tr>
<th></th>
<th>m = 2</th>
<th>m = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>h = 3</td>
<td>7</td>
<td>8 * 10^6 - 1</td>
</tr>
<tr>
<td>h = 5</td>
<td>31</td>
<td>3.2 * 10^{11} - 1</td>
</tr>
<tr>
<td>h = 7</td>
<td>127</td>
<td>1.28 * 10^{16} - 1</td>
</tr>
</tbody>
</table>
Definition Of B-Tree

• Definition assumes external nodes (extended m-way search tree).
• B-tree of order m.
 ▪ m-way search tree.
 ▪ Not empty \Rightarrow root has at least 2 children.
 ▪ Remaining internal nodes (if any) have at least $\lceil m/2 \rceil$ children.
 ▪ External (or failure) nodes on same level.
2-3 And 2-3-4 Trees

- B-tree of order m.
 - m-way search tree.
 - Not empty \Rightarrow root has at least 2 children.
 - Remaining internal nodes (if any) have at least $\text{ceil}(m/2)$ children.
 - External (or failure) nodes on same level.

- 2-3 tree is B-tree of order 3.
- 2-3-4 tree is B-tree of order 4.
B-Trees Of Order 5 And 2

• B-tree of order \(m \).
 ▪ \(m \)-way search tree.
 ▪ Not empty \(\Rightarrow \) root has at least 2 children.
 ▪ Remaining internal nodes (if any) have at least \(\lceil m/2 \rceil \) children.
 ▪ External (or failure) nodes on same level.

• B-tree of order 5 is 3-4-5 tree (root may be 2-node though).
• B-tree of order 2 is full binary tree.
Minimum # Of Pairs

- $n = $ # of pairs.
- # of external nodes = $n + 1$.
- Height = $h =>$ external nodes on level $h + 1$.

<table>
<thead>
<tr>
<th>level</th>
<th># of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>≥ 2</td>
</tr>
<tr>
<td>3</td>
<td>$\geq 2 \times \text{ceil}(m/2)$</td>
</tr>
<tr>
<td>$h + 1$</td>
<td>$\geq 2 \times \text{ceil}(m/2)^{h-1}$</td>
</tr>
</tbody>
</table>

$n + 1 \geq 2 \times \text{ceil}(m/2)^{h-1}, \ h \geq 1$
Minimum # Of Pairs

\[n + 1 \geq 2^{\text{ceil}(m/2)^{h-1}}, \ h \geq 1 \]

- \(m = 200. \)

<table>
<thead>
<tr>
<th>height</th>
<th># of pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(\geq 199)</td>
</tr>
<tr>
<td>3</td>
<td>(\geq 19,999)</td>
</tr>
<tr>
<td>4</td>
<td>(\geq 2 \times 10^6 - 1)</td>
</tr>
<tr>
<td>5</td>
<td>(\geq 2 \times 10^8 - 1)</td>
</tr>
</tbody>
</table>

\[h \leq \log_{\text{ceil}(m/2)} \left[\left(\frac{n+1}{2}\right) + 1 \right] \]
Choice Of m

- Worst-case search time.
 - $(\text{time to fetch a node} + \text{time to search node}) \times \text{height}$
• convention:
 - Root of the B-tree is always in main memory.
 - Any nodes that are passed as parameters must already have had a DISK_READ operation performed on them.

• Operations:
 - Searching a B-Tree.
 - Creating an empty B-tree.
 - Splitting a node in a B-tree.
 - Inserting a key into a B-tree.
 - Deleting a key from a B-tree.
Node Structure

\[n \ c_0 \ k_1 \ c_1 \ k_2 \ c_2 \ ... \ k_n \ c_n \]

- \(c_i \) is a pointer to a subtree.
- \(k_i \) is a dictionary pair (KEY).
Search

BT_Search(x, k)

\[i \leftarrow 0 \]

while \(i < n \) and \(k > k_{i+1}[x] \)

\[\text{do } i \leftarrow i + 1 \]

if \(i < n \) and \(k = k_{i+1}[x] \)

then return \((x, i + 1)\)

if \(\text{leaf}[x] \) then return NULL

else DISK-READ\((C_i[x])\)

return B-Tree-Search\((C_i[x], k)\)
B-Tree-Created(T) :

- **Algorithm** :

  ```
  B-Tree-Created(T)
  {
      x ← Allocate - Node()
      Leaf[x] ← TRUE
      n[x] ← 0
      DISK - WRITE(x)
      root[T] ← x
  }
  ```

- **time** : $O(1)$
Insertion into a full leaf triggers bottom-up node *splitting* pass.
Split An Overfull Node

\[m \ c_0 \ k_1 \ c_1 \ k_2 \ c_2 \ \ldots \ k_m \ c_m \]

- \(c_i \) is a pointer to a subtree.
- \(k_i \) is a dictionary pair\((KEY)\).

\[\text{ceil}(m/2)-1 \ c_0 \ k_1 \ c_1 \ k_2 \ c_2 \ \ldots \ k_{\text{ceil}(m/2)-1} \ c_{\text{ceil}(m/2)-1} \]

\[m - \text{ceil}(m/2) \ c_{\text{ceil}(m/2)} \ k_{\text{ceil}(m/2)+1} \ c_{\text{ceil}(m/2)+1} \ \ldots \ k_m \ c_m \]

- \(k_{\text{ceil}(m/2)} \) plus pointer to new node is inserted in parent.
• Insert a pair with key = 2.
• New pair goes into a 3-node.
Insert Into A Leaf 3-node

- Insert new pair so that the 3 keys are in ascending order.

![Diagram with nodes 1, 2, 3]

- Split overflowed node around middle key.

![Diagram with nodes 1, 2, 3]

- Insert middle key and pointer to new node into parent.
• Insert a pair with key $= 2$.
• Insert a pair with key = 2 plus a pointer into parent.
• Now, insert a pair with key = 18.
Insert Into A Leaf 3-node

• Insert new pair so that the 3 keys are in ascending order.

 16 17 18

• Split the overflowed node.

 16 18
 17

• Insert middle key and pointer to new node into parent.
• Insert a pair with key = 18.
• Insert a pair with key = 17 plus a pointer into parent.
• Insert a pair with key = 17 plus a pointer into parent.
• Now, insert a pair with key $= 7$.
• Insert a pair with key = 6 plus a pointer into parent.
• Insert a pair with key = 4 plus a pointer into parent.
• Insert a pair with key = 8 plus a pointer into parent.
• There is no parent. So, create a new root.
• Height increases by 1.
Btree::InsertNode(Key k, Element e) {
 bool overflow = Insert(root, k, e);
 if (overflow) {
 <Key, Node*> newpair = split(root);
 root = new Node(root, newpair);
 }
 return;
}
• Bool Insert(node* x, Key k, Element e)
{
 if (leaf(x))
 insertLeaf(x, k, e);
 if (size(x) > m-1) return true;
 else return false;
 idx = keySearch(x, k);
 bool overflow = Insert(x->C[idx], k, e);
if (overflow)
 <Key, Node*> newpair = split(x->C[idx]);
InsertPair(x, newpair);
if(size(x) > m-1)
 return true;
else return false;
}
Exercises: P609-3