Fibonacci Heaps

<table>
<thead>
<tr>
<th>Operation</th>
<th>Actual</th>
<th>Amortized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Remove min (or max)</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Meld</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Remove</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Decrease key (or increase)</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Analysis

• FibonacciAnalysis.ppt
• Video
 ▪ www.cise.ufl.edu/~sahni/cop5536; Internet Lectures; not registered
 ▪ COP5536_FHA.rm
Single Source All Destinations
Shortest Paths

Diagram of a graph with nodes labeled 1 to 7 and weighted edges connecting them.
Greedy Single Source All Destinations

• Known as Dijkstra’s algorithm.
• Let $d(i)$ be the length of a shortest one edge extension of an already generated shortest path, the one edge extension ends at vertex i.
• The next shortest path is to an as yet unreached vertex for which the $d()$ value is least.
• After the next shortest path is generated, some $d()$ values are updated (decreased).
Greedy Single Source All Destinations

Path	Length
1	0
1 → 3	2
1 → 3 → 5	5
1	6
2	16
3	7
4	4
5	14
6	6
7	11
Operations On $d()$

- **Remove min.**
 - Done $O(n)$ times, where n is the number of vertices in the graph.

- **Decrease $d()$.**
 - Done $O(e)$ times, where e is the number of edges in the graph.

- **Array.**
 - $O(n^2)$ overall complexity.

- **Min heap.**
 - $O(n\log n + e\log n)$ overall complexity.

- **Fibonacci heap.**
 - $O(n\log n + e)$ overall complexity.
Prim’s Min-Cost Spanning Tree Algorithm

• Array.
 ▪ $O(n^2)$ overall complexity.

• Min heap.
 ▪ $O(n\log n + e\log n)$ overall complexity.

• Fibonacci heap.
 ▪ $O(n\log n + e)$ overall complexity.
Min Fibonacci Heap

- Collection of min trees.
- The min trees need not be Binomial trees.
Node Structure

- Degree, Child, Data
- Left and Right Sibling
 - Used for circular *doubly* linked list of siblings.
- Parent
 - Pointer to parent node.
- ChildCut
 - True if node has lost a child since it became a child of its current parent.
 - Set to false by remove min, which is the only operation that makes one node a child of another.
 - Undefined for a root node.
Fibonacci Heap Representation

- Degree, Parent and ChildCut fields not shown.
Remove(\texttt{theNode})

- \texttt{theNode} points to the Fibonacci heap node that contains the element that is to be removed.
- \texttt{theNode} points to min element \Rightarrow do a remove min.
 - In this case, complexity is the same as that for remove min.
Remove(\text{theNode})

- \text{theNode} points to an element other than the min element.
 - Remove \text{theNode} from its doubly linked sibling list.
 - Change parent’s \text{child} pointer if necessary.
 - Set parent field of \text{theNode}’s children to \text{null}.
 - Combine top-level list and children list of \text{theNode}; do not pairwise combine equal degree trees.
 - Free \text{theNode}.

- In this case, actual complexity is $O(\log n)$ (assuming \text{theNode} has $O(\log n)$ children).
Remove theNode from its doubly linked sibling list.
Remove(theNode)

Combine top-level list and children of theNode setting parent pointers of the children of theNode to null.
Remove(theNode)
DecreaseKey(theNode, theAmount)

If theNode is not a root and new key < parent key, remove subtree rooted at theNode from its doubly linked sibling list.

Insert into top-level list.
DecreaseKey(\text{theNode}, \text{theAmount})

Update heap pointer if necessary
Cascading Cut

- When `theNode` is cut out of its sibling list in a remove or decrease key operation, follow path from parent of `theNode` to the root.
- Encountered nodes (other than root) with `ChildCut = true` are cut from their sibling lists and inserted into top-level list.
- Stop at first node with `ChildCut = false`.
- For this node, set `ChildCut = true`.
Cascading Cut Example

Decrease key by 2.
Cascading Cut Example
Cascading Cut Example
Actual complexity of cascading cut is $O(h) = O(n)$.