Red Black Trees

Colored Nodes Definition

• Binary search tree.
• Each node is colored red or black.
• Root and all external nodes are black.
• No root-to-external-node path has two consecutive red nodes.
• All root-to-external-node paths have the same number of black nodes.
Red Black Trees

Colored Edges Definition

• Binary search tree.
• Child pointers are colored red or black.
• Pointer to an external node is black.
• No root to external node path has two consecutive red pointers.
• Every root to external node path has the same number of black pointers.
Example Red-Black Tree
Properties

- The height of a red black tree that has \(n \) (internal) nodes is between \(\log_2(n+1) \) and \(2\log_2(n+1) \).
Properties

- Start with a red black tree whose height is h; collapse all red nodes into their parent black nodes to get a tree whose node degrees are between 2 and 4, height is $\geq h/2$, and all external nodes are at the same level.
Properties

- Let $h' \geq h/2$ be the height of the collapsed tree.
- Internal nodes of collapsed tree have degree between 2 and 4.
- Number of internal nodes in collapsed tree $\geq 2^{h'-1}$.
- So, $n \geq 2^{h'-1}$
- So, $h \leq 2 \log_2 (n + 1)$
Properties

• O(1) amortized complexity to restructure following an insert/delete.
• C++ STL implementation
• java.util.TreeMap => red black tree
Insert

- New pair is placed in a new node, which is inserted into the red-black tree.

- New node color options.
 - Black node \Rightarrow one root-to-external-node path has an extra black node (black pointer).
 - Hard to remedy.
 - Red node \Rightarrow one root-to-external-node path may have two consecutive red nodes (pointers).
 - May be remedied by color flips and/or a rotation.
Classification Of 2 Red Nodes/Pointers

- XYz
 - X => relationship between gp and pp.
 - pp left child of gp => X = L.
 - Y => relationship between pp and p.
 - p left child of pp => Y = L.
 - z = b (black) if d = null or a black node.
 - z = r (red) if d is a red node.
XYr

- Color flip.

- Move \(p \), \(pp \), and \(gp \) up two levels.
- Continue rebalancing.
LLb

- Rotate.

- Done!
- Same as LL rotation of AVL tree.
LRb

- Rotate.

- Done!
- Same as LR rotation of AVL tree.
- RRb and RLb are symmetric.
Delete

- Delete as for unbalanced binary search tree.
- If red node deleted, no rebalancing needed.
- If black node deleted, a subtree becomes one black pointer (node) deficient.
Delete A Black Leaf

- Delete 8.
Delete A Black Leaf

- y is root of deficient subtree.
- py is parent of y.
Delete A Black Degree 1 Node

- Delete 45.
- y is root of deficient subtree.
Delete A Black Degree 2 Node

- Not possible, degree 2 nodes are never deleted.
Rebalancing Strategy

- If y is a red node, make it black.
Rebalancing Strategy

- Now, no subtree is deficient. Done!
Rebalancing Strategy

- y is a black root (there is no py).
- Entire tree is deficient. Done!
Rebalancing Strategy

• y is black but not the root (there is a py).

• Xcn
 - y is right child of $py \implies X = R$.
 - Pointer to v is black $\implies c = b$.
 - v has 1 red child $\implies n = 1$.
Rb0 (case 1, py is black)

- Color change.
- Now, py is root of deficient subtree.
- Continue!
Rb0 (case 2, py is red)

- Color change.
- Deficiency eliminated.
- Done!
Rb1 (case 1)

- LL rotation.
- Deficiency eliminated.
- Done!
Rb1 (case 2)

- LR rotation.
- Deficiency eliminated.
- Done!
Rb2

- LR rotation.
- Deficiency eliminated.
- Done!
Rr(n)

- $n = \# \text{ of red children of v’s right child w.}$
• LL rotation.
• Done!
Rr(1) (case 1)

- LR rotation.
- Deficiency eliminated.
- Done!
Rr(1) (case 2)

- Rotation.
- Deficiency eliminated.
- Done!
- Rotation.
- Deficiency eliminated.
- Done!
Red-Black Trees—Rank

- \(\text{rank}(x) = \# \) black pointers on path from \(x \) to an external node.
- Same as \(\# \) black nodes (excluding \(x \)) from \(x \) to an external node.
- \(\text{rank(external node)} = 0 \).
An Example
Properties Of rank(x)

- rank(x) = 0 for x an external node.
- rank(x) = 1 for x parent of external node.
Properties Of \(\text{rank}(x)\)

- \(p(x)\) exists \(\Rightarrow\) \(\text{rank}(x) \leq \text{rank}(p(x)) \leq \text{rank}(x) + 1\).
- \(g(x)\) exists \(\Rightarrow\) \(\text{rank}(x) < \text{rank}(g(x))\).
Red-Black Tree

A binary search tree is a red-black tree iff integer ranks can be assigned to its nodes so as to satisfy the stated 4 properties of rank.
• \((p(x), x)\) is a red pointer iff \(\text{rank}(x) = \text{rank}(p(x))\).
• \((p(x), x)\) is a black pointer iff \(\text{rank}(x) = \text{rank}(p(x)) - 1\).
Relationship Between rank() And Color

- Root is black.
- Other nodes:
 - Red iff pointer from parent is red.
 - Black iff pointer from parent is black.
Relationship Between `rank()` And Color

- Given `rank(root)` and node/pointer colors, remaining ranks may be computed on way down.
• Height $\leq 2 \times \text{rank(root)}$.
• No external nodes at levels 1, 2, …, rank(root).
rank(root) & tree height

• No external nodes at levels 1, 2, ..., rank(root).
 ▪ So, \(\#\text{nodes} \geq \sum_{1 \leq i \leq \text{rank(root)}} 2^{i-1} = 2^{\text{rank(root)}} - 1 \).
 ▪ So, \(\text{rank(root)} \leq \log_2(n+1) \).

• So, \(\text{height(root)} \leq 2\log_2(n+1) \).
Join(S,m,B)

• Input
 ▪ Dictionary S of pairs with small keys.
 ▪ Dictionary B of pairs with big keys.
 ▪ An additional pair m.
 ▪ All keys in S are smaller than m.key.
 ▪ All keys in B are bigger than m.key.

• Output
 ▪ A dictionary that contains all pairs in S and B plus the pair m.
 ▪ Dictionaries S and B may be destroyed.
Join Binary Search Trees

- \(O(1) \) time.
Join Red-black Trees

- When $\text{rank}(S) = \text{rank}(B)$, use binary search tree method.

$\text{rank}(\text{root}) = \text{rank}(S) + 1 = \text{rank}(B) + 1$.
\[\text{rank}(S) > \text{rank}(B) \]

- Follow right child pointers from root of \(S \) to first node \(x \) whose rank equals \(\text{rank}(B) \).
rank(S) > rank(B)

- If there are now 2 consecutive red pointers/nodes, perform bottom-up rebalancing beginning at m.
- O(rank(S) – rank(B)).
\[\text{rank}(S) < \text{rank}(B) \]

- Follow left child pointers from root of \(B \) to first node \(x \) whose rank equals \(\text{rank}(S) \).
- Similar to case when \(\text{rank}(S) > \text{rank}(B) \).
Split(k)

- Inverse of join.
- Obtain
 - S … dictionary of pairs with key < k.
 - B … dictionary of pairs with key > k.
 - m … pair with key = k (if present).
Split A Binary Search Tree

Diagram:
- Node A
 - Left child: a
 - Right child: C
- Node C
 - Left child: c
 - Right child: E
- Node E
 - Left child: e
 - Right child: f
- Node D
 - Left child: g
 - Right child: d
- Node B
 - Left child: b
- Node S
 - Left child: m
Split A Red-Black Tree

- Previous strategy does not split a red-black tree into two red-black trees.
- Must do a search for m followed by a traceback to the root.
- During the traceback use the join operation to construct S and B.
Split A Red-Black Tree

\[S = f \]

\[B = g \]
Split A Red-Black Tree

\[S = f \quad B = g \]
Split A Red-Black Tree

\[S = f \quad B = g \]

\[S = \text{join}(e, E, S) \]
Split A Red-Black Tree

\[
\begin{align*}
S &= f \\
B &= g \\
S &= \text{join}(e, E, S) \\
B &= \text{join}(B, D, d)
\end{align*}
\]
Split A Red-Black Tree

\[S = f \quad B = g \]

\[S = \text{join}(e, E, S) \]

\[B = \text{join}(B, D, d) \]

\[S = \text{join}(c, C, S) \]
Split A Red-Black Tree

\[
S = f \\
\text{join}(e, E, S) \\
B = \text{join}(B, D, d) \\
S = \text{join}(c, C, S) \\
B = \text{join}(B, B, b)
\]
Split A Red-Black Tree

\[S = f \quad B = g \]

\[S = \text{join}(e, E, S) \]

\[B = \text{join}(B, D, d) \]

\[S = \text{join}(c, C, S) \]

\[B = \text{join}(B, B, b) \]

\[S = \text{join}(a, A, S) \]