Stacks and Queues

The Stack Abstract Data type

Linear list.
One end is called top.
Other end is called bottom.

Additions to and removals from the top end
only.

Stack Of Cups

(Cr(Co ColGeE

Add a cup to the stack.

* Remove a cup from new stack.
» A stack 1s a LIFO list.

(S oG e

top

top

add

c P
B

A
add

> W O O

Inserting and deleting elements in a stack:

top

add

vy

del

top

ADT 3.1

template <class T>
class Stack
{ // A finite ordered list with zero or more elements.
public:
Stack (int stackCapacity = 10);
//Creates an empty stack with initial capacity of stackCapacity

bool IsEmpty() const;
//If number of elements in the stack 1s 0, true else false

T& Top() const;
// Return the top element of stack

void Push(const T& item);
// Insert 1tem 1nto the top of the stack

void Pop();
// Delete the top element of the stack.

}s

To implement STACK ADT, we can use
. an array

. a variable top
Initially top is set to

—1.

So we have the following data members of Stack:

private:
T* stack;
int top;
int capacity;

template <class T>
Stack<T>::Stack(int stackCapacity): capacity(stackCapacity)
d
if (capacity < 1) throw “Stack capacity must be > 0”;
stack = new T[capacity];
top = -1;
§

template <class T>
Inline bool Stack<T>::IsEmpty() const

d

return(top == -1);

)

template <class T>

inline T& Stack<T>::Top()

{
if (IsEmpty) throw “Stack 1s Empty”;
return stack[top];

)

template <class T>
void Stack<T>::Push(const T& x)
d
if (top == capacity - 1)
d
ChangeSizelD(stack, capacity, 2*capacity);
capacity *= 2;
}

stack[++top] = x;

)

The template function ChangeSizelD changes the size
of a 1-Dimensional array of type T from oldSize to
newSize:

template <class T>
void ChangeSize 1 D(T* a, const int oldSize, const int newSize)
d

if (newSize < 0) throw “New length must be >= 07;

T* temp = new T[newSize];

int number = min(oldSize, newSize);

copy(a, a + number, temp);

delete [] a;

a = temp;

template <class T>

void Stack<T>::Pop()

{ // Delete top element of stack.
if (IsEmpty()) throw “Stack 1s empty, cannot delete.”;
stack[top--].~T(); // destructor for T

)

Exercises: P138-1, 2

Bus Stop Queue

o 4
& T

front rear réear réear réear

Bus Stop Queue

'v; '-\E Y »
Bus }; J} gl %ﬂ“ ‘;?
Stop | U ‘ ﬁ
front rear

“

Bus Stop Queue

Bus Stop Queue

Bus; iE

Stop }

rear réear

3.3 The Queue Abstract Data Type

Linear list.

One end is called front.

Other end is called rear.

Additions are done at the rear only.

Removals are made from the front
only.

3.3 The Queue Abstract Data Type

z AB ABC ABCD BCOD
[1
f,r f r f r f r f r

add add add delete

f = queue front r = queue rear

ADT 3.2

template <class T>
class Queue
{ // A finite ordered list with zero or more elements.
public:
Queue (int queueCapacity = 10);
// Creates an empty queue with initial capacity of
// queueCapacity

bool IsEmpty() const;
T& Front() const; //Return the front element of the queue.
T& Rear() const; //Return the rear element of the queue.

void Push(const T& item);
//Insert 1item at the rear of the queue.

void Pop();
// Delete the front element of the queue.

To implement this QUEUE ADT, we can use
an array
two variable front and rear

front being one less than the position of the first
element

So we have the following data members of Queue:

private:
T* queue;
int front,
rear,
capacity;

e
s - p rear 16 p
4 4 4 £ 4
3 3 3 J4 3
rear rear [—
D J3 2 m 2 || front D
RS J2 1 || front 1 1
rear -
front=-1 0 ' J1 6-rfront 0 0
rear=-1—> | Empty | Ifont] | J1,J3 Added M~ 12,03 J4,)5,J6 Added

Removed N
|fr0nt=rear=-1 | Empty: front==rear

EnQ: sq[++rear]=x;
DeQ: x=sq[++front];

rear
— >

J6

J5

J4

front

SO [— W [Hs JTwu

Problem

EnQueue: Add an element
+ Overflow!
¢ Space Available! -

False Overflow
Solution?
¢ Elements movement
Y

rear
— >

J6

J5

J4

front

S [— W B Twu

Problem

False Overflow

Solution?
N S
06> 1
620
Capacity = 6
6 %6=0

Array Queue

Use a 1D array

 Circular view of array.

[3]

[1 [4]
[0] [9]

Array Queue

* Possible configuration with 3 elements.

2] [3]
A B

[1] C 4]

<
o g

Array Queue

* Another possible conﬁguratlon with
elements.

2] [3]

B

1 4
[]\/\) [4]
B A
0] —L—15]

Array Queue

» Use integer Varlables front and rear.

front 1s one position counterclockwise from
first element

rear gives position of last element

rear rear

Add An Element

* Move rear one clockwise.

rear

Add An Element

« Move rear one clockwise.
* Then put into queue[rear].

Remove An Element

e Move front one clockwise.

Remove An Element

e Move front one clockwise.

* Then extract from queue[front].

front [2]

[1]

0] [5]

Moving rear Clockwise

* rear+;

1f (rear = = queue.length) rear = 0;

rear

[4]

front

[1]

» rear = (rear + 1) % queue.length;

Empty That Queue

2] [3]

Empty That Queue

2] [3]

[4]

Empty That Queue

2] [3]

rear

[1] &

front

[4]

Empty That Queue

2] [3]

rear

[1]([4]

front 0] (5]

When a series of removes causes the queue
to become empty, front = rear.

When a queue is constructed, it is empty.
So initialize front = rear = 0.

A Full Tank Please

2] [3]

A FuII Tank Please

rear [3]
D
. front
[1] [4]

B A
[0] [5]

A Full Tank Please

2] [3] rear

front
i € [4]

A Full Tank Please

2] [3]

* When a series of adds causes the queue to
become full, front = rear.

* So we cannot distinguish between a full
queue and an empty queue!

Ouch!!!!!
Remedies.

¢ Don't let the queue get full.

When the addition of an element will cause the
gueue to be full, increase array size.

This is what the text does.

¢ Define a boolean variable lastOperationlsPut.
Following each put set this variable to true.
Following each remove set to false.
Queue is empty iff (front == rear) && !
lastOperationlsPut

Queue is full iff (front == rear) &&
lastOperationlsPut

Ouch!ll!

Remedies (continued).

¢ Define an integer variable size.
Following each put do size++.
Following each remove do size--.
Queue is empty iff (size ==
Queue is full iff (size == queue.length

template <class T>
Queue<Type>::Queue(int queueCapacity):
capacity(queueCapacity)
d
if (capacity < 1) throw “Queue capacity must > 07’5
queue = new T[capacity];
front = rear = 0;

)

template <class T>
Inline bool Queue<T>::IsEmpty()
{ return front==rear };

template <class T>
inline T& Queue<T>::Front()

d
if (IsEmpty()) throw “Queue 1s empty. No front element”;

return queue|(front+1)%capacity];

)

template <class T>

inline T& Queue<T>::Rear()

d
if (ISEmpty()) throw “Queue 1s empty. No rear element”;
return queue(rear];

)

template <class T>
void Queue<T>::Push(const T& x)
{ // add x at rear of queue
if ((rear+1)%capacity == front)
{ // queue full, double capacity
// code to double queue capacity comes here

h

rear = (rear+1)%capacity;
queue(rear| = X;

We can double the capacity of queue in the way as
shown in the next slide:

&/

queue 0 12 3 4 56 7

CDE|FIGl |A|B
front=5, rear=4

front=5 ﬂ

O 123 4 56 7 8 9 10 11 12 13 14 15

A

B

C

D

E

F

G

front=15, rear=6

43

This configuration may be obtained as follows:
(1)Create a new array newQueue of twice the capacity.

(2)Copy the second segment to positions in newQueue
beginning at 0.

(3)Copy the first segment to positions in newQueue
beginning at capacity-front-1.

The code is in the next slide:

// allocate an array with twice the capacity
T* newQueue = new T[2*capacity];

// copy from queue to newQueue
int start = (front+1)%capacity;
if (start < 2)
// no wrap around
copy(queue+tstart, queuetstart+capacity-1, newQueue);
else
{ // queue wraps around
copy(queuetstart, queuetcapacity, newQueue);
copy(queue, queuetrear+1, newQueuetcapacity-start);

)

// switch to newQueue

front = 2*capacity-1; rear = capacity-2; capacity *= 2;
delete [] queue;

queue = newQueue;

template <class T>

void Queue<T>::Pop()

{ // Delete front elemnet from queue
if (IsEmpty()) throw “Queue 1s empty. Cannot delete”;
front = (front+1)%capacity;
queue[front].~T;

)

For the circular representation, the worst-case add and

delete times (assuming no array resizing is needed) are
O0®).

Exercises: P147-1, 3.

Rat In A Maze

Rat In A Maze

* Move order is: right down left up
* Block positions to avoid revisit.

Rat In A Maze

* Move order is: right down left up
* Block positions to avoid revisit.

Rat In A Maze

* Move backward until we reach a square from which a
forward move is possible.

Rat In A Maze

‘ .

e Move down.

Rat In A Maze

e Move left.

Rat In A Maze

e Move down.

Rat In A Maze

* Move backward until we reach a square from which a
forward move is possible.

Rat In A Maze

* Move backward until we reach a square from which a
forward move is possible.

e Move downward.

Rat In A Maze

* Move right.
 Backtrack.

Rat In A Maze

e Move downward.

Rat In A Maze

* Move right.

Rat In A Maze

* Move one down and then right.

Rat In A Maze

* Move one up and then right.

Rat In A Maze

e Move down to exit and eat cheese.

~&% Standing... Wondering...

* Move forward whenever possible
— No wall & not visited

* Move back ---- HOW?

— Remember the footprints

—OR Better?

— NEXT possible move from previous position
e Storage?

Path from maze entry to
— STACK

current position operates
as a stack!

> It’s a LONG life ...

* How to put an end to this misery? RIP

— God bless it!
— Dame it!

* Whenever exist a possible move from previous
positions

* Whenever the stack is not empty

To Do: A Mazing Problem

Problem: find a path from the entrance to the exit of a
maze.

entrance

O O A A O -~ ©
-~ O O 2~ A O -
O -~ O O ~ o O
O -~ A O O -~ O
A O 0 A A O -
G O G « T Y o Y ¢
©O ©O ~ © A ~a O
© - O -~ O - -

exit

Representation:

e maze[i][j, 1=si=m,1<j=<p.

e 1--- blocked, 0 --- open.

* the entrance: maze[1][1], the exit: maze[m][p].
e current point: [i][j].

* boarder of 1’s, so a maze[m+2][p+2].

e 8 possible moves: N, NE, E, SE, S, SW, W and NW.

NW
[--1]0-1]

NE
[--1]0+1]
/

W [i][j-1]~

-

—{]0+1] E

[i+1][j-1]
SW

/V

N

[I+1]0+1]
SE

To predefine the 8 moves:

struct offsets

d

int a,b;
$5
enum directions {N, NE, E, SE, S, SW, W, NW};

offsets move[8];

q move[g].a move[q].b
N -1 0
NE -1 1
E 0 1
SE 1 1
S 1 0
SW 1 -1
)} 0 -1
NW -1 -1

Table of moves
Thus, from [i][j] to [g][h] in SW direction:
g=i+tmove|[SW].a;
h=j+move[SW].b;

The basic idea:

Given current position [i][j] and 8 directions to go, we
pick one direction d, get the new position [g][h].

If [g][h] is the goal, success.

If [g][h] is a legal position, save [i][j] and d+1 in a stack
in case we take a false path and need to try another

direction, and [g][h] becomes the new current position.

Repeat until either success or every possibility is tried.

In order to prevent us from going down the same path
twice:
use another array mark[m+2][p+2], which is initially 0.

Mark(i][j] is set to 1 once the position is visited.

First pass:

Initialize stack to the maze entrance coordinates and direction east;

while (stack 1s not empty)
d

(1, j, dir)=coordinates and direction from top of stack;
pop the stack;
while (there are more moves from (1, j))

d

(g, h)= coordinates of next move ;
if ((g==m) && (h==p)) success;

if (('maze[g][h]) & & ('mark[g][h])) // legal and not visited

{
mark[g][h]=1;
dir=next direction to try;
push (1, j, dir) to stack;
(1, J, dir) = (g, h, N);

)

cout << “No path 1n maze.”<< endl:
9

We need a stack of items:
struct Items §{
int x, y, dir;

}s

Also, to avoid doubling array capacity during stack
pushing, we can set the size of stack to m*p.

Now a precise maze algorithm.

void path(const int m, const int p)
{ //Output a path (if any) in the maze; maze[0][1] = maze[m+1][i]
// =maze[j][0] = maze[j][p+1]=1,0=<i=p+l,0 =] =m+1.
// start at (1,1)
mark[1][1]=1;
Stack<Items> stack(m™p);
Items temp(1, 1, E);
stack.Push(temp);
while (!stack.IsEmpty())
d
temp= stack.Top();
Stack.Pop();

int 1I=temp.x; int j=temp.y; int d=temp.dir;

while (d<8)
d
int g=i+tmove[d].a; int h=j+move[d].b;
if ((g==m) & & (h==p)) {// reached exit
// output path
cout <<stack;
cout << 1<<* << << “<<d<< endl; // last two
cout << m<<* “<< p<<endl; // points

return;

h

if ((!maze[g][h]) & & ('mark[g][h])) { //new position
mark[g][h]=1;
temp.x=1; temp.y=); temp.dir=d+1;
stack.Push(temp);
1=g ; j7=h ; d=N; // move to (g, h)

§

else d++; // try next direction

)

cout << “No path in maze.”<< endl;

h

The operator <<is overloaded for both Stack and Items
as:

template <class T>
ostream& operator<<(ostream& os, Stack<T>& s)

d

0s << “top=""<<s.top<< endl;

for (int 1=0;1<=s.top;1++);
0s<<1<<*“;”’<<s.stack[1]<< endl;

return os;

)

We assume << can access the private data member of
Stack through the friend declaration.

ostream& operator<<(ostreamé& os,Items& item)

d

return os<<item.x<<“.”<<item.v<<‘‘."’<<item.dir-1:
9 y 9 9

// note 1item.dir 1s the next direction to go so the current
// direction 1s item.dir-1.

)

Since no position is visited twice, the worst case
computing time is O(m*p).

Exercises: P157-2, 3

Queue instead of Stack?

Wire Routing

prerpry

prPIPIPIY

prrrerr
ey

Lee’s Wire Router

] start pin

end pin

Label all reachable squares 1 unit from start.

Lee’s Wire Router

] start pin

end pin

Label all reachable unlabeled squares 2 units
from start.

Lee’s Wire Router

] start pin

end pin

Label all reachable unlabeled squares 3 units
from start.

Lee’s Wire Router

] start pin

end pin

Label all reachable unlabeled squares 4 units
from start.

Lee’s Wire Router

] start pin

end pin

Label all reachable unlabeled squares 5 units
from start.

Lee’s Wire Router

] start pin

end pin

Label all reachable unlabeled squares 6 units
from start.

Lee’s Wire Router

] start pin

end pin

End pin reached. Traceback.

A expression is made of operands, operators, and
delimiters. For instance,

infix: A/B-C+D*E-A*C
postfix: AB/C-DE*+ AC *-—

Infix: operators come in-between operands (unary
operators precede their operand).

Postfix: each operator appears after its operands.

* the order in which the operations are carried out must
be uniquely defined.

* to fix the order, each operator is assigned a priority.

e within any pair of parentheses, operators with highest
priority will be evaluated first.

* evaluation of operators of the same priority will
proceed left to right.

* Innermost parenthesized expression will be evaluated
first.

The next slide shows a set of sample priorities from C
++,

priority operator

unary minus, !
* 1, %
+ -
<, <=, >= >

&&
|

~N O O A WO DN -

Problem:

how to evaluate an expression?

postfix: AB/C-DE*+ AC *—

Every time we compute a value, we store it in the
temporary location T,, i=1. Read the postfix left to
right to evaluate it:

AB/C-DE*+ AC *-

operation postfix

Tg Is the result.

94

Virtues of postfix:
* no need for parentheses

* the priority of the operators is no longer relevant

Idea:

v'make a left to right scan
v'store operands

v'evaluate operators whenever occurred

What data structure
should be used?

STACK

void Eval(Expression ¢)
{ // evaluate the postfix expression e. It 1s assumed that the
// last token 1n e is ‘#’. A function NextToken 1s used to get
// the next token from e. Use stack.
Stack<Token> stack; //initialize stack
for (Token x = NextToken(e); x!=‘#"; x=NextToken(e))
if (x 1s an operand) stack.Push(x);
else { // operator
remove the correct number of operands for operator x
from stack; perform the operation x and store the result
(if any) onto the stack;

)

Problem: how to evaluate an infix expression?
Solution:
1.Translate from infix to post fix;

2.Evaluate the postfix.

Idea: note the order of the operands in both infix
and postfix

infix: A/ B-C+D*E-A*C
postfix: AB/C-DE*+ AC *-—
the same!

immediately passing any operands to the output

store the operators in a Stack until the right time.

e.g.
A*(B+C)*D > ABC+*D*

A*(B+C)*D Next token stack output

—->ABC+*D*

‘ Atten% '

From the example, we can see the left parenthesis
behaves as an operator with high priority when its not
in the stack, whereas once it get in, it behaves as one
with low priority.

isp (in-stack priority)

icp (in-coming priority)

the isp and icp of all operators in Fig. 3.15 remain

unchanged
isp(“(*)=8, icp(‘(*)=0, isp(‘#’)=8

Hence the rule:

Operators are taken out of stack as long as their
isp is numerically less than or equal to the icp of
the new operator.

void Postfix (Expression e)

{ // output the postfix of the infix expression e. It is assumed
// that the last token 1n e is ‘#’. Also, ‘#’ 1s used at the bottom
// of the stack.

Stack<Token> stack; //initialize stack
stack.Push(‘#’);

for (Token x=NextToken(e); x!=#"; x=NextToken(e))
if (x 1s an operand) cout<<x;
else if (x==°)")
{// unstack until ‘(¢
for (; stackTop()!=°(’; stack.Pop())
cout<<stack.Top();
stack.Pop(); // unstack (¢
§
else { // X 1s an operator
for (5 1sp(stack.Top()) <= icp(x); stack.Pop())
cout<<stack.Top();
stack.Push(x);

§
// end of expression, empty the stack
for (; !stack.IsEmpty()); cout<<stack.Top(), stack.Pop());
cout << endl;

)

Analysis:

Computing time: one pass across the input with n
tokens, O(n).

The stack will not be deeper than 1 (‘#’) + the number
of operators in e.

Exercises: P165-1,2

Can we evaluate infix expressions directly?

infix: A/ B-C+D*E-A*C

Exercise

<N o N A W N

R[T7I[7]

1 2 3 4 5 6 7
o1 /1 /(1|11 [0
170/0 0 [O0(1 |0

~110(0 /1 | 11/0 [0

1 0|10 1/1 [0

“1/0(1 /1101 |0

1 1/0/1 | 1/0 [0

O, 0[O0 0|00 0
1# Purple
2H
3# Red

4# Green

Item.no = 1;
Item.seleted = 1;
Item.candidate={2,3,4};
s.push(item);

hile(s.size

'=mapCount)

Item.candidate =;

s.push(item);
Aot T 6 7

CIdSVv

Iwhle(f*s.tdp .Jandidate)

s.pop(); A

s.top.selected =;
s.top.candidate =;

void MapColor (int R[n][n], int s[n]) {
s[0]=1; /1 00 X3 1e&
i=1; j=1; /JiAREBES, jspres
while (i<n) {
while ((j<4) && (i<n)) {
k=0; /I kIEREFBEBXES
while (k<i) && (s[k]* R[i][k]!=))) kt++;
I FIESMR 2R ERBATEE
if (k<i) j++; /I F j+1 Bt iR
else {
s[i++]=j; j=1;
VI ZREERT), SRR, BERET—X
5
if (j>4) {j=s[--i]+1; ;3
/- (E) TEXRTMXEBLEEEH, AMGeER
h

Backtracking([=l i)

A method to try all possibilities using
recursion.

When there are several possibilities,
take one and go on;

go back to the most recent choice, and
try another possibility when a dead end
IS reached.

