2.2 The Array as an Abstract Data Type

Array:

- A set of pairs: <index, value> (correspondence or mapping)
- Two operations: retrieve, store

Now we will use the C++ class to define an ADT.
class GeneralArray {

 // a set of pairs <index, value> where for each value of
 // index in IndexSet there is a value of type float. IndexSet is
 // a finite ordered set of one or more dimensions.

public:

 GeneralArray(int j, RangeList list, float initValue = defaultValue);

 // The constructor GeneralArray creates a j
 // dimensional array of floats; the range of the kth
 // dimension is given by the kth element of list.
 // For all i∈IndexSet, insert <i, initValue> into the array.
float Retrieve(index i);
// if (i ∈ IndexSet) return the float associated with i in the
// array; else throw an exception.

void Store(index i, float x);
// if (i ∈ IndexSet) replace the old value associated with i
// by x; else throw an exception.
Note:

- Not necessarily implemented using consecutive memory
- Index can be coded any way
- `GeneralArray` is more general than C++ array as it is more flexible about the composition of the index set
- To be simple, we will hereafter use the C++ array
Array can be used to implement other abstract data types. The simplest one might be:

Ordered or linear list.

Example:

(Sun, Mon, Tue, Wed, Thu, Fri, Sat)

(2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A)

() // empty list
More generally, **An ordered list** is either empty or
\((a_0, a_1, ..., a_{n-1})\). // index important

Main operations:

(1) Find the length, \(n\), of the list.

(2) Read the list from left to right (or right to left)

(3) Retrieve the \(i\)th element, \(0 \leq i < n\).

(4) Store a new value into the \(i\)th position, \(0 \leq i < n\).
(5) Insert a new element at position \(i \), \(0 \leq i < n \), causing elements numbered \(i, i+1, \ldots n-1 \) to become numbered \(i+1, i+2, \ldots n \).

(6) Delete the element at position \(i \), \(0 \leq i < n \), causing elements numbered \(i+1, i+2, \ldots n-1 \) to become numbered \(i, i+1, \ldots n-2 \).
How to represent ordered list efficiently?

- Sequential mapping
 - Use array: \(a_i \leftrightarrow \text{index } i \)

- Complexity
 - Random access any element in \(O(1) \).
 - Operations (5) and (6)?
 - Data movement
 - \(O(n) \)

Now let us look at a problem requiring ordered list.
Problem:

Build an ADT for the representation and manipulation of symbolic **polynomials**.

\[A(x) = 3x^2 + 2x + 4 \]
\[B(x) = x^4 + 10x^3 + 3x^2 + 1 \]

Degree: the largest exponent
class Polynomial {
 // p(x)=a_0x^0+...+a_nx^n ; a set of ordered pairs of <e_i, a_i>,
 // where a_i is a nonzero float coefficient and e_i is a
 // non-negative exponent

public:
 Polynomial ();
 // Construct the polynomial p(x)=0
void AddTerm (Exponent e, Coefficient c);
// add the term <e,c> to *this, so that it can be initialized

Polynomial Add (Polynomial poly);
// return the sum of the polynomials *this and poly

Polynomial Mult (Polynomial poly);
// return the product of the polynomials *this and poly

float Eval (float f);
// evaluate polynomial *this at f and return the result
Polynomial Representation

Let \(A(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \)

Representation 1

```cpp
private:
    int degree; // degree \leq \text{MaxDegree}
    float coef[MaxDegree+1];

    a.degree = ?

    n;
    MaxDegree?

    a.coef[i] = ?

    a_{n-i}, 0 \leq i \leq n
```

Simple algorithms for many operations.
Representation 2

When a\.degree \ll \text{MaxDegree}, representation 1 is very poor in memory use. To improve, define variable sized data member as:

private:
 int degree;
 float *coef;

Polynomial::Polynomial(int d)
{
 int degree=d;
 coef = new float[degree+1];
}
Representation 2 is still not desirable.

For instance, $x^{1000} + 1$

makes 999 entries of the coef be zero.

So, we store only the none zero terms:

Representation 3

$$A(x) = b_m x^{e_m} + b_{m-1} x^{e_{m-1}} + \ldots + b_0 x^{e_0}$$

Where $b_i \neq 0$, $e_m > e_{m-1}, \ldots, e_0 \geq 0$
class Polynomial; // forward declaration

class Term {
friend Polynomial;
private:
 float coef; // coefficient
 int exp; // exponent
};

class Polynomial {
public:

private:
 Term *termArray;
 int capacity; // size of termArray
 int terms; // number of nonzero terms
}
For \(A(x) = 2x^{1000} + 1 \)

\[A\text{.termArray looks like:} \]

<table>
<thead>
<tr>
<th>coef</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp</td>
<td>1000</td>
<td>0</td>
</tr>
</tbody>
</table>
Many zero --- good
Few zero --- ?

not very good

may use twice as much space as in presentation 2.
Polynomial Addition

Use presentation 3 to obtain $C = A + B$.

Idea:

Because the exponents are in descending order, we can add $A(x)$ and $B(x)$ term by term to produce $C(x)$.

The terms of C are entered into its termArray by calling function NewTerm.

If the space in termArray is not enough, its capacity is doubled.
Polynomial Polynomial::Add (Polynomial b) {
 // return the sum of the polynomials *this and b.
 Polynomial c;
 int aPos=0, bPos=0;
 while ((aPos < terms) && (b < b.terms))
 {
 if (termArray[aPos].exp==b.termArray[bPos].exp) {
 float t = termArray[aPos].coef + termArray[bPos].coef
 if (t)
 c.NewTerm (t, termArray[aPos].exp);
 aPos++; bPos++;
 }
 else if (termArray[aPos].exp < b.termArray[bPos].exp) {
 c.NewTerm (b.termArray[bPos].coef,
 b.termArray[bPos].exp);
 bPos++;
 }
 }
}
else {
 c.NewTerm(termArray[aPos].coef, termArray[aPos].exp);
 aPos++;
}

// add in the remaining terms of *this
for (; aPos < terms; aPos++)
 c.NewTerm(termArray[aPos].coef, termArray[aPos].exp);

// add in the remaining terms of b
for (; bPos < b.terms; bPos++)
 c.NewTerm(b.termArray[bPos].coef, b.termArray[bPos].exp);
return c;
void Polynomial::NewTerm(const float theCoeff,
 const int theExp)
{
 // add a new term to the end of termArray.
 if (terms == capacity)
 {
 // double capacity of termArray
 capacity *= 2;
 term *temp = new term[capacity]; // new array
 copy(termArray, termAarray + terms, temp);
 delete [] termArray; // deallocate old memory
 termArray = temp;
 }
 termArray[terms].coef = theCoeff;
 termArray[terms++].exp = theExp;
}
Analysis of Add:

Let m, n be the number of nonzero terms in a and b respectively.

• line 3 and 4---O(1)

• in each iteration of the while loop, aPos or bPos or both increase by 1, the number of iterations of this loop ≤ m+n-1

• if ignore the time for doubling the capacity, each iteration takes O(1)

• line 20--- O(m), line 23--- O(n)

Asymptotic computing time for Add: O(m+n)
Analysis of doubling capacity:

- the time for doubling is linear in the size of new array
- initially, c.capacity is 1
- suppose when Add terminates, c.capacity is 2^k
- the total time spent over all array doubling is

$$O\left(\sum_{i=1}^{k} 2^i \right) = O(2^{k+1}) = O(2^k)$$

- since $c.terms > 2^{k-1}$ and $m + n \geq c.terms$, the total time for array doubling is

$$O(c.terms) = O(m + n)$$
• so, even consider array doubling, the total run time of Add is $O(m + n)$.

• experiments show that array doubling is responsible for very small fraction of the total run time of Add.

Exercises: P93-2,6, P94-9
Sparse Matrices

Introduction

A general matrix consists of m rows and n columns (m \times n) of numbers, as:

\[
\begin{array}{ccc}
 & 0 & 1 & 2 \\
 0 & -27 & 3 & 4 \\
1 & 6 & 82 & -2 \\
2 & 109 & -64 & 11 \\
3 & 12 & 8 & 9 \\
4 & 48 & 27 & 47 \\
\end{array}
\]

Fig.2.2(a) 5\times3
Fig. 2.2(b) 6×6

$$
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 15 & 0 & 22 & 0 & -15 \\
1 & 0 & 11 & 3 & 0 & 0 \\
2 & 0 & 0 & 0 & -6 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 \\
4 & 91 & 0 & 0 & 0 & 0 \\
5 & 0 & 0 & 28 & 0 & 0 \\
\end{bmatrix}
$$
A matrix of $m \times m$ is called a **square**.

A matrix with many zero entries is called **sparse**.

Representation:

- **A natural way ---**

 - $a[m][n]$

 - **access element by $a[i][j]$, easy operations. But**

 - **for sparse matrix, wasteful of both memory and time.**

- **Alternative way ---**

 - **store nonzero elements explicitly. 0 as default.**
class SparseMatrix
{
 // a set of <row, column, value>, where row, column are
 // non-negative integers and form a unique combination;
 // value is also an integer.

public:
 SparseMatrix (int r, int c, int t);
 // creates a r×c SparseMatrix with a capacity of t nonzero
 // terms

 SparseMatrix Transpose ();
 // return the SparseMatrix obtained by transposing *this

 SparseMatrix Add (SparseMatrix b);
 SparseMatrix Multiply (SparseMatrix b);
};
Sparse Matrix Representation

Use triple \(<row, col, value>\), sorted in ascending order by \(<row, col>\).

```cpp
class SparseMatrix;
class MatrixTerm {
friend class SparseMatrix;
Private:
    int row, col, value;
};
```
We need also

the number of rows

the number of columns

the number of nonzero elements

And in class `SparseMatrix`:

```
private:
    Int rows, cols, terms, capacity;
    MatrixTerm *smArray;
```

Now we can store the matrix of Fig.2.2 (b) as Fig.2.3 (a).
<table>
<thead>
<tr>
<th></th>
<th>row</th>
<th>col</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>smArray[0]</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>[1]</td>
<td>0</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>[2]</td>
<td>0</td>
<td>5</td>
<td>-15</td>
</tr>
<tr>
<td>[3]</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>[4]</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>[5]</td>
<td>2</td>
<td>3</td>
<td>-6</td>
</tr>
<tr>
<td>[6]</td>
<td>4</td>
<td>0</td>
<td>91</td>
</tr>
<tr>
<td>[7]</td>
<td>5</td>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

Fig.2.3 (a)
Transposing a Matrix

Transpose:

If an element is at position \([i][j]\) in the original matrix, then it is at position \([j][i]\) in the transposed matrix.

Fig.2.3(b) shows the transpose of Fig2.3(a).

```java
for(col=0;col<n;col++)
    for(row=0;row<m;row++)
        n[col][row]=m[row][col];
T(n)=O(m×n)
```
<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>j</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
<td>-7</td>
</tr>
</tbody>
</table>

M(a)

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>j</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>6</td>
<td>-7</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3</td>
<td>14</td>
</tr>
</tbody>
</table>

M(b)
First try:

For (each row i)

✓ take element (i, j, value)
✓ store it in (j, i, value) of the transpose;

Difficulty:

NOT knowing where to put (j, i, value) until all other elements preceding it have been processed.

<table>
<thead>
<tr>
<th>smArray</th>
<th>row</th>
<th>col</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>[1]</td>
<td>0</td>
<td>4</td>
<td>91</td>
</tr>
<tr>
<td>[2]</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>[3]</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>[4]</td>
<td>2</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>[5]</td>
<td>3</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>[6]</td>
<td>3</td>
<td>2</td>
<td>-6</td>
</tr>
<tr>
<td>[7]</td>
<td>5</td>
<td>0</td>
<td>-15</td>
</tr>
</tbody>
</table>
Improvement:

For (all elements in col j)
✓ store (i, j, value) of the original matrix as
✓ (j, i, value) of the transpose;

Since the rows are in order, we will locate elements in the correct column order.

<table>
<thead>
<tr>
<th>smArray</th>
<th>row</th>
<th>col</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>[1]</td>
<td>0</td>
<td>4</td>
<td>91</td>
</tr>
<tr>
<td>[2]</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>[3]</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>[4]</td>
<td>2</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>[5]</td>
<td>3</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>[6]</td>
<td>3</td>
<td>2</td>
<td>-6</td>
</tr>
<tr>
<td>[7]</td>
<td>5</td>
<td>0</td>
<td>-15</td>
</tr>
</tbody>
</table>
MA

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>j</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>p</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>p</td>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>p</td>
<td>4</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>p</td>
<td>5</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>p</td>
<td>6</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>p</td>
<td>7</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>p</td>
<td>8</td>
<td>4</td>
<td>-7</td>
</tr>
</tbody>
</table>

MB

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>j</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>k</td>
<td>1</td>
<td>3</td>
<td>-3</td>
</tr>
<tr>
<td>k</td>
<td>2</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>k</td>
<td>3</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>k</td>
<td>4</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>k</td>
<td>5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>6</td>
<td>-7</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3</td>
<td>14</td>
</tr>
</tbody>
</table>

col=1 **col=2**
SparseMatrix SparseMatrix::Transpose ()
{
 // return the transpose of *this
 SparseMatrix b(cols, rows, terms);
 if (terms > 0)
 {
 // nonzero matrix
 int currentB = 0;
 }
for (int c=0; c<cols; c++) // transpose by columns
for (int i=0; i<terms; i++)
 // find and move terms in column c
 if (smArray[i].col == c)
 {
 b.smArray[CurrentB].row = c;
 b.smArray[CurrentB].col = smArray[i].row;
 b.smArray[CurrentB++].value= smArray[i].value;
 }
} // end of if (terms > 0)
return b;
Time complexity of Transpose:

- line 7-15 loop--- cols times
- line 10 loop--- terms times
- other line--- O(1)

Total time: O(cols* terms)

Additional space: O(1)

Think:

O(cols* terms) is not good. If terms = O(cols* rows) then it becomes O(cols^2* rows)---too bad!
Since with 2-dimensional representation, we can get an easy $O(\text{cols} \times \text{rows})$ algorithm as:

```plaintext
for (int j=0; j < columns; j++)
    for (int i=0; i < rows; i++)  B[j][i] = A[i][j];
```

Further improvement:

If we use some more space to store some knowledge about the matrix, we can do much better: doing it in $O(\text{cols} + \text{terms})$.
<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>j</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
<td>-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>j</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>6</td>
<td>-7</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3</td>
<td>14</td>
</tr>
</tbody>
</table>
• get the number of elements in each column of
 *this = the number of elements in each row of B;
• obtain the starting point in B of each of its rows;
• move the elements of *this one by one into their right position in B.

Now the algorithm FastTranspose.
<table>
<thead>
<tr>
<th>col</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>num[col]</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>cpot[col]</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

\[
\begin{array}{ccc}
\text{i} & \text{j} & \text{v} \\
0 & 6 & 7 & 8 \\
1 & 1 & 2 & 12 \\
2 & 1 & 3 & 9 \\
3 & 3 & 1 & -3 \\
4 & 3 & 6 & 14 \\
5 & 4 & 3 & 24 \\
6 & 5 & 2 & 18 \\
7 & 6 & 1 & 15 \\
8 & 6 & 4 & -7 \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{i} & \text{j} & \text{v} \\
0 & 7 & 6 & 8 \\
1 & 1 & 3 & -3 \\
2 & 1 & 6 & 15 \\
3 & 2 & 1 & 12 \\
4 & 2 & 5 & 18 \\
5 & 3 & 1 & 9 \\
6 & 3 & 4 & 24 \\
7 & 4 & 6 & -7 \\
8 & 6 & 3 & 14 \\
\end{array}
\]
1 SparseMatrix SparseMatrix::FastTranspos() {
 // return the transpose of *this in O(terms+cols) time.
 SparseMatrix b(cols, rows, terms);
 if (terms > 0) {
 // nonzero matrix
 int *rowSize = new int[cols];
 int *rowStart = new int[cols];
 // compute rowSize[i] = number of terms in row i of b
 fill(rowSize, rowSize + cols, 0); // initialize
 for (i=0; i<terms; i++) rowSize[smArray[i].col]++;
 }
}
11 // rowStart[i] = starting position of row i in b
12 rowStart[0] = 0;
13 for (i=1; i<cols; i++) rowStart[i] = rowStart[i-1] + rowSize[i-1];
14 for (i=0; i<terms; i++)
15 { // copy from *this to b
16 int j = rowStart[smArray[i].col];
17 b.smArray[j].row = smArray[i].col;
18 b.smArray[j].col = smArray[i].row;
19 b.smArray[j].value = smArray[i].value;
20 rowStart[smArray[i].col]++;
21 } // end of for
After line 13, we get:

<table>
<thead>
<tr>
<th></th>
<th>[0]</th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
<th>[4]</th>
<th>[5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RowSize=</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RowStart=</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Note the error in P101 of the text book!
Analysis:

3 loops:

• line 10--- O(terms)
• line 13--- O(cols)
• line 14 – 21--- O(terms)
• line 14 – 21--- O(terms)
 and line 9--- O(cols), other lines--- O(1)

Total: O(cols+terms)

This is a typical example for trading space for time.

Exercises: P107-1, 2, 4
The String Abstract data Type

A string \(S = s_0, s_1, \ldots, s_{n-1}, \)
where \(s_i \in \text{char}, \ 0 \leq i < n, \ n \) is the length.

ADT 2.5 String

class String
{
 // a finite set of zero or more characters;

public:
 String (char *init, int m);
 // initialize *this to string init of length m
bool operator == (String t);
// if *this equals t, return true else false.
bool operator ! ();
// if *this is empty return true else false.
int Length ();
// return the number of chars in *this
String Concat (String t);
String Substr (int i, int j);
int Find (String pat);
// return i such that pat matches the substring of *this that
// begins at position i. Return –1 if pat is either empty or not
// a substring of *this.
};
Assume the String class is represented by:

```
private:
    char* str;
```
String Pattern Matching: A Simple Algorithm

![Diagram showing the process of string pattern matching with arrows and indices indicating movement through the string and pattern.]
int String::Find (String pat)
{
// Return –1 if pat does not occur in *this; otherwise
// return the first position in *this, where pat begins.
 if (pat.Length() == 0) return -1; // pat is empty
 for (int start=0; start<=Length() - pat.Length(); start++)
 {
 // check for match beginning at str[start]
 for (int j=0; j<pat.Length() && str[start+j]==pat.str[j]; j++)
 if (j== pat.Length()) return start; // match found
 // no match at position start
 }
 return -1; // pat does not occur in s
}
The complexity of it is $O(\text{LengthP} \times \text{LengthS})$.

Problem:

rescanning.

Even if we check the last character of pat first, the time complexity can’t be improved!
String Pattern Matching: The Knuth-Morris-Pratt Algorithm

Can we get an algorithm which *avoid rescanning* the strings and works in $O(\text{LengthP + LengthS})$?

This is optimal for this problem, as in the worst it is necessary to look at characters in the pattern and string at least once.
Basic Ideas:

■ Rescanning to avoid missing the target ---
 ■ too conservative

■ If we can go without rescanning, it is likely to do the job in $O(\text{LengthP} + \text{LengthS})$.

■ Preprocess the pattern, to get some knowledge of the characters in it and the position in it, so that if a mismatch occurs we can determine where to continue the search and avoid moving backwards in the string.

Now we show details about the idea.
case: \(j = 0 \)
An concrete example:

\[s = \ldots a \ b \ d \ a \ b \ ? \ . \ . \ . \ . \]

\[\text{pat} = a \ b \ d \ a \ b \ c \ a \ c \ a \ b \]

\[j=5 \]
An concrete example:

\[s = \ldots a \ b \ d \ a \ b \ ? \ldots \ldots \]

\[pat = a \ b \ d \ a \ b \ c \ a \ c \ a \ b \]

\[j = 5 \]
case: \(j \neq 0 \)
To formalize the above idea:

Definition: if \(p = p_0p_1 \cdots p_{n-1} \) is a pattern, then its failure function \(f \), is defined as:

\[
f(j) = \begin{cases}
\text{largest } k < j, \text{ such that } p_0p_1 \cdots p_k = p_{j-k}p_{j-k+1} \cdots p_j & \text{if such } k \geq 0 \text{ exists} \\
-1 & \text{otherwise}
\end{cases}
\]
For example, \(\text{pat} = a \ b \ c \ a \ b \ c \ a \ c \ a \ b \), we have

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{pat}</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>f</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Note:

- \(\text{largest} \): no match be missed
- \(k < j \): avoid dead loop
From the definition of f, we have the following rule for pattern matching:

If a partial match is found such that $s_{i-j} \ldots s_{i-1} = p_0p_1 \ldots p_{j-1}$ and $s_i \neq p_j$ then matching may be resumed by comparing s_i and $p_{f(j-1)+1}$ if $j \neq 0$.

If $j=0$, then we may continue by comparing s_{i+1} and p_0.

The failure function is represented by an array of integers f, which is a private data member of String.

Now the algorithm FastFind.
```cpp
int String::FastFind (String pat)
{
    // Determine if pat is a substring of s
    int PosP = 0, PosS = 0;
    int LengthP = pat.Length(), LengthS = Length();
    while ((PosP < LengthP) && (PosS < LengthS))
    {
        if (pat.str[PosP] == str[PosS])
        {
            // characters match
            PosP ++; PosS ++;
        }
        else
        {
            if (PosP == 0)
                PosS ++;
            else
                PosP = pat.f [PosP-1] + 1;
        }
    }
    if ((PosP < LengthP) || LengthP == 0) return -1;
    else return PosS - LengthP;
}
```
Analysis of FastFind:

- Line 7 and 11 --- at most \(\text{LengthS} \) times, since \(\text{PosS} \) is increased but never decreased. So PosP can move right on pat at most \(\text{LengthS} \) times (line 7).

- Line 12 moves PosP left, it can be done at most \(\text{LengthS} \) times. Note that \(f(j-1)+1 < j \).

Consequently, the computing time is \(O(\text{LengthS}) \).

How about the computing of the \(f \) for the pattern? By similar idea, we can do it in \(O(\text{LengthP}) \).
If a=b, then $f(j)=f(j-1)+1$ else
If \(c = b \), \(f(j) = f(f(j-1)) + 1 = f^2(j-1) + 1 \) else ……

In general, we have the following restatement of the failure function:
\[f(j) = \begin{cases}
-1 & \text{if } j = 0 \\
 f^{m(j-1)+1} & \text{where } m \text{ is the least } k \text{ for which } p_f^k_{(j-1)+1} = p_j \\
-1 & \text{if there is no } k \text{ satisfying the above}
\end{cases} \]

Now we get the algorithm to compute \(f \).
```cpp
1   void String::Failurefunction( )
2   { // compute the failure function of the pattern *this.
3       int LengthP= Length( );
4       f[0]= -1;
5       for (int j=1; j< LengthP; j++) // compute  f[j]
6           {
7               int i=f[j-1];
8               while (/*(str+j)!=*(str+i+1)) && (i>=0)) i=f[i]; // try for m
9                   if ( /*(str+j)==*(str+i+1))
10                       f[j]=i+1;
11                   else f[j]= -1;
12           }
13   }
```
Analysis of fail:

- In each iteration of the while i decreases (line 8, and \(f(j) < j \))
- i is reset (line 7) to –1 (when the previous iteration went through line 11), or to a value 1 greater than its value on the previous iteration (when through line 10).
- There are only \(\text{LengthP} - 1 \) executions of line 7, the value of i has a total increment of at most \(\text{LengthP} - 1 \).
- i cannot be decremented more than \(\text{LengthP} - 1 \) times, the while is iterated at most \(\text{LengthP} - 1 \) times over the whole algorithm.
Consequently, the computing time is $O(\text{LengthP})$.

Now we can see, when the failure function is not known in advance, pattern matching can be carried out in $O(\text{LengthP} + \text{LengthS})$ by first computing the failure function and then using the FastFind.
Exercises: P118-1, P119-7, 9
Experiment 1: P123-8