
WFGUARD: an Effective Fuzzing-testing-based
Traffic Morphing Defense against Website

Fingerprinting
Zhen Ling†, Gui Xiao‡, Lan Luo§∗, Rong Wang†, Xiangyu Xu†, and Guangchi Liu†

†School of Computer Science and Engineering, Southeast University, China
‡School of Cyber Science and Engineering, Southeast University, China

Email: {zhenling, xiaogui, junowang, xy-xu, gc-liu}@seu.edu.cn
§School of Computer Science and Technology, Anhui University of Technology, China

Email: lluo@ahut.edu.cn

Abstract—Website fingerprinting (WF) attack is a type of
traffic analysis attack. It enables a local and passive eavesdropper
situated between the Tor client and the Tor entry node to deduce
which websites the client is visiting. Currently, deep learning
(DL) based WF attacks have overcome a number of proposed
WF defenses, demonstrating superior performance compared to
traditional machine learning (ML) based WF attacks. To mitigate
this threat, we present WFGUARD, a fuzzing-testing-based traffic
morphing WF defense technique. WFGUARD employs fine-
grained neuron information within WF classifiers to design a
joint optimization function and then applies gradient ascent to
maximize both neurons value and misclassification possibility in
DL-based WF classifiers. During each traffic mutation cycle, we
propose a gradient based dummy traffic injection pattern gener-
ation approach, continuously mutating the traffic until a pattern
emerges that can successfully deceive the classifier. Finally, the
pattern present in successful variant traces are extracted and
applied as defense strategies to Tor traffic. Extensive evaluations
reveal that WFGUARD can effectively decrease the accuracy
of DL-based WF classifiers (e.g., DF and Var-CNN) to a mere
4.43%, while only incurring an 11.04% bandwidth overhead. This
highlights the potential efficacy of our approach in mitigating WF
attacks.

Index Terms—Anonymous communication systems, Website
fingerprinting, Fuzzing testing

I. INTRODUCTION

Tor is one of the most widely used anonymous communi-
cation systems due to its outstanding anonymity protection
capability. According to Tor Metrics [32], there are about
three million active users utilize Tor to protect their privacy.
However, owing to its popularity, it attracts lots of researchers
to de-anonymize users’ privacy using various traffic analysis
techniques [18]–[20]. Website fingerprinting (WF) attack is
a traffic analysis attack that enables a local and passive
eavesdropper between the Tor client and the Tor entry node to
infer which websites the client is visiting. Figure 1 shows the
attack model. The local WF attackers (e.g., an Internet service
provider (ISP), or a local network administrator) passively
record and collect the Tor network traffic without modifying,
delaying or decrypting any packet of traces.

The WF attack can be modeled as a supervised classification
problem, in which the traces of each website are labeled

* Corresponding author: Dr. Lan Luo of Anhui University of Technology,
China.

Client Websites

Tor network

Exit
(OR3)

Middle
(OR2)

Entry
(OR1)

Attacker

Fig. 1. Website fingerprinting attack

and used to train various WF classifiers. Traditional machine
learning (ML) based WF attacks, such as k-NN [33], CUMUL
[23] and k-FP [12], are studied to achieve about 90% accuracy.
However, the performance of ML-based attacks rely on the
selection of hand-crafted traffic features, such as traffic burst,
packet timing interval, packet direction and so on. To resolve
the problems, a large number of efficient deep learning (DL)
based WF attacks [1], [3], [27], [28], [30], [31] are proposed
to automatically extract the traffic features without any feature
engineering. What is more, the DL-based WF attacks show
better performance than ML-based WF attacks.

To mitigate the WF attacks, various WF defenses are
introduced to protect users privacy, such as BuFLO [8], WTF-
PAD [16], Walkie-Talkie [35], FRONT [9], Mockingbird [26],
Surakav [10] and so on. These defenses perturb the traffic
by injecting dummy packets and/or delaying packets so as to
eliminate the distinguishable traffic features of each website
and confuse the WF attackers.

However, the sophisticated architectures of DL-based WF
attacks pose challenges when designing effective defenses
to eliminate high-level traffic features. Consequently, many
existing defenses show poor performance against DL-based
WF attacks with unacceptably high bandwidth and/or la-
tency overhead. To address the issues, the design of more
efficient defense methods that effectively deceive DL-based
WF classifiers, leading to misclassifications on Tor traffic,
becomes necessary. One potential solution is to leverage
essential information of deep learning network to design
defense methods. Additionally, we notice that fuzzing testing
deep neural network (DNN) shows promise in improving WF
defenses. Fuzzing testing DNN aims to generate various inputs
to trigger the decision logic of DNN and identify a large
number of unexpected behaviors, such as misclassification.
This aligns with the goals of WF defenses. Nevertheless, none

of the existing defenses combine fine-grained information of
deep learning network with fuzzing testing DNN technique to
create effective and efficient defenses against DL-based WF
classifiers.

In this paper, we employ fuzzing testing DNN technique
to design a fuzzing-testing-based traffic morphing defense
(WFGUARD) against WF attacks. The accuracy of DL-based
WF classifiers is determined by their neurons values. These
values, susceptible to differences due to unique traffic features
inherent to specific websites, play a crucial role in guiding
the decision-making process of the classifier. Thus, we can
leverage these neurons values to construct a fuzzing objective
function and influence them by continuously mutating traffic
patterns. Such traffic manipulation can potentially change the
classifier’s decision logic, leading to possible misclassifica-
tions, thereby rendering the approach as a potent WF defense
strategy. Specifically, we first elaborately select representative
traffic traces for each website and initiate a seed pool. Next,
we design a joint optimization function based on deliber-
ately selected neurons valuess and misclassifications of WF
classifiers. For each trace from the pool, gradient ascent is
utilized to maximize the optimization function. The computed
gradient is then processed with trace mutation strategies so
as to obtain the injection pattern (i.e., the injection position
and direction) for the trace. In this way, the joint optimization
function guides the mutation on all traces of each website.
In addition, we propose two mutation strategies to generate
various injection patterns for comparison. We choose the more
superior injection patterns, which can successfully deceive the
attacker with the minimum bandwidth overhead and minimum
accuracy of DL-based WF classifiers. Extensive evaluation
shows that WFGUARD reliably decreases the accuracy of
DL-based WF classifiers (e.g., DF [31], Var-CNN [3]) to
4.43% with only 11.04% bandwidth overhead in the closed-
world scenario and 6% with only 11.22% bandwidth overhead
in the open-world scenario. It demonstrates that WFGUARD
outperforms the existing defense approaches [16], [22], [26].

In summary, our major contributions are as follows:
• To the best of our knowledge, we are the first to employ

the fuzzing testing DNN technique to design WFGUARD
method against DL-based WF attackers. We can find one
injection pattern for each website which minimize the
DL-based WF classification accuracy. We utilize the fine-
grained neuron information to design a joint optimization
function which incorporates two parts: maximizing the
neurons values and the number of the misclassification
behaviors of DL-based WF classifiers.

• We leverage the gradient ascent method to maximize the
joint optimization function. In particular, the dimension of
gradient vector is the same as the input trace. Therefore,
we obtain the injection positions and directions of dummy
cell according to the index and sign of the gradient vector.

• We evaluate the feasibility and efficiency of WFGUARD
against DL-based WF classifiers through extensive exper-
iments including a series of mutation strategies employed
to generate various injection patterns for original traces.

The efficiency of the injection patterns are evaluated with
800 traces of each website. The experimental results
demonstrate that WFGUARD can significantly decrease
the accuracy of the DL-based WF classifiers to around
4.43% by only introducing less than 11.04% bandwidth
overhead, and can effectively defend against DL-based
traffic analysis attacks to preserve the communication
privacy.

The rest of this paper is organized as follows. In Section II,
we give the background of WF attacks, WF defenses and
fuzzing testing deep neural networks which inspired us to
design the WFGUARD method. We introduce the threat model,
basic idea, motivation and the details of WFGUARD design
in Section III. Then we conduct extensive experiments to
evaluate the performance of WFGUARD method as well as
the existing WF defenses in Section IV. We review related
work in Section V and conclude this paper in Section VI.

II. BACKGROUND

This section covers necessary background. We briefly in-
troduce the WF attack and defense techniques as well as the
fuzzing testing deep neural network.

A. Website Fingerprinting Attack

WF attacks aim to undermine anonymity protection in
anonymous communication systems, typically where users
employ networks like Tor for browsing. Attackers passively
gather raw network traffic between the Tor client and entry
node, as depicted in Figure 1. They extract traffic features
to form website fingerprints, using these to train an offline
classifier. This classifier is then deployed at runtime to identify
the specific websites visited by the potential victim.

Existing WF attacks fall into two categories: ML-based
WF attacks [6], [12], [23], [24], [33], [34], [38] and DL-
based WF attacks [1], [3], [27], [28], [31]. The ML-based
WF attacks rely on expert knowledge to extract hand-crafted
traffic features, such as traffic burst, packet timing interval, and
packet direction, to train the classifier and leverage the output
scores from the ML-based WF classifiers to infer the visited
websites. However, the efficacy of ML-based WF classifiers
heavily depends on the feature engineering.

To tackle this issue, since 2016, DL-based WF attacks
have been introduced to leverage deep learning models to
automatically extract high-dimensional traffic features to train
the classifier for identifying different websites. Before the
training process, raw traces are preprocessed to extract the
Tor cells using the method proposed by [34]. Moreover, the
preprocessed trace is padded into a fixed length for classifier
input. This results in a trace sequence comprising +1, -1, and
0. +1 represents a Tor cell emitted from the Tor client to the
website, -1 signifies a Tor cell sent in the opposite direction
and 0 pads the trace to the fixed length.

B. Website Fingerprinting Defense

To protect user communication privacy, a series of WF
defenses have been proposed. These defenses aim to hide

the patterns of the traffic and ensure the anonymity of user
communications. While existing defenses involve either inject-
ing dummy packets or delaying real packets, both methods
have their trade-offs. Injecting dummy packets alters the
traffic patterns by introducing additional packets. However,
this approach results in extra bandwidth overhead. On the other
hand, delaying real data packets has a significant impact on the
arrival time of the packets, which leads to additional latency
overhead. This delay reduces the loading speed of websites
and directly affects the overall browsing experience of users.
As a result, the central objective in designing WF defenses is
to strike a balance between the necessary overhead incurred
and the overall effectiveness.

The existing defenses can be divided into two categories:
feature-suppression-based WF defenses [4], [5], [7], [8], [13],
[16], [21], [33], [35] and feature-morphing-based WF defenses
[2], [9], [14], [17], [26], [29]. The feature-suppression-based
WF defenses involve using traffic obfuscation methods to
homogenize the traffic features of all websites. This approach
aims to prevent the classifier from accurately classifying
the websites. However, it takes a large overhead to achieve
homogenizing the traffic features of all websites. Therefore,
researchers propose the feature-morphing-based WF defenses,
which aim to reshape the source traffic feature of current
website into a different website by injecting dummy cells.
These methods can successfully mislead the state-of-the-art
DL-based WF classifiers with lower overhead.

C. Fuzzing Testing Deep Neural Networks

In traditional software testing domain, fuzzing testing is
leveraged to detect huge amount of software vulnerabilities.
The key idea of fuzzing testing is to generate random inputs to
detect lots of incorrect software behaviors and potential flaws.
The idea can be also employed for improving robustness of
DNN. Therefore, fuzzing testing is also used to explore the
decision boundaries of DNN and get more undesired behav-
iors, such as misclassification. In fuzzing testing DNN domain,
existing methods [11], [15], [25], [36], [37] concentrate on
generating various inputs by using different techniques to
maximize neuron coverage and detect incorrect behaviors at
the same time. Neuron coverage is a ratio of the number of
unique activated neurons for all test inputs to the total number
of neurons in the DNN. A neuron is activated if its output
value is higher than a threshold value (e.g., 0). As we can
see from the results of these methods, fuzzing testing DNN
is able to maximize both the number of observed differential
behaviors and the neuron coverage, which inspired us to apply
the technique of fuzzing testing DNN to WF defense.

III. FUZZING-TESTING-BASED TRAFFIC MORPHING
TECHNIQUE

In this section, we first introduce the threat model and
motivation of our defense. Then, we present the basic idea of
our fuzzing-testing-based traffic morphing technique. Finally,
we elaborate on the critical design of our method step by step.

Joint Optimistic Function

Class A

Class B

Class N

Classification

Magnifying

Fuzzing

+1
+1

-1
-1

+1
-1
-1

+1
+1

-1
+1
+1

-1
-1

+1
+1

-1
-1

-1
+1

-1
-1

+1
+1

-1
+1
+1

-1
-1

+1

-1

+1
Deep Learning Model

Fig. 2. Motivation

A. Threat model

The threat model of WF attacks is depicted in Figure 1.
We assume a local and passive attacker is capable of identi-
fying the individual website visited by a Tor user. A "local"
attacker is one positioned somewhere between the Tor client
and the Tor entry node. The term "passive" denotes that an
attacker is able to observe and record Tor network traffic
without the capacity to modify, delay, or drop packets. Such
potential attackers include Internet Service Providers (ISP),
Autonomous Systems (AS) and local network administrators
that are positioned between the Tor client and the entry node.
An attacker can collect labeled traffic and preprocess the traffic
using the method proposed by [34] to train an offline classifier.
Additionally, since the most sophisticated WF classifiers based
on the traffic preprocessed method [34] include DF [31] and
Var-CNN [3], we assume that the attacker deploys such WF
classifiers to inspect the traffic and performs the WF attacks
at runtime.

B. Motivation

The WF defense strategy is designed to create deceptive
traffic patterns by inserting dummy cells. Its primary goal is
to confuse DL-based WF classifiers while keeping overhead
at a minimum. Drawing inspiration from the fuzzing testing
approach, we utilize neuron information derived from DL-
based classifiers as feedback for the fuzzing process. This
feedback guides the mutation process, allowing us to identify
an optimal injecting pattern with the fewest possible injections
required to mislead the classifier.

It is crucial to highlight that the accuracy of DL-based
WF classifiers is susceptible to the neurons values present
within them. Due to the varying traffic features across different
websites, there are disparities in the neurons values within the
classifier. The decision-making mechanism of the classifier
heavily depends on these neurons values and the weights
among interconnected neurons. In light of this, we can leverage
the neurons values as fuzzing feedback by employing mutation
to the injection patterns. By doing so, we indirectly alter
specific neurons values, resulting in changes to the classifier’s
decision logic. This process has the potential to cause misclas-
sifications, making it an effective strategy for the WF defense.

Seed Queue
Initialization

Joint Optimization
Function

Max（incorrect behaviors +
neuron coverage)

Seed
Selection

x
Output

x'

NoYes

Continued Mutation

Yes

No

Misclassification
Mutation Strategies

∆ = ∂ obj (x) / ∂x
x = x + f(∆)

WF
Classifiers

Variant
Trace

Max Mutation

Fig. 3. Workflow of Fuzzing-testing-based Traffic Morphing Technique

C. Basic idea

To deceive DL-based WF classifiers with minimal defense
overhead, we explore effective and efficient positions and
directions (i.e., injection patterns) for injecting dummy Tor
cells into labeled traffic of each website, as shown in Figure 2.
Motivated by the susceptibility of DL-based classifiers to
neurons values, we design a joint optimization function that
express a joint influence of the neurons values and misclas-
sifications of WF classifiers. Through maximizing the joint
optimization function with gradient ascent, WFGUARD is
able to explore the injection patterns, generate fuzzing input
variations, and finally result in misclassifications of the target
classifier. The fuzzing input variations are in the form of
mutated traces with dummy Tor cells elaborately injected. In
order to determine the mutation pattern in each iteration, two
mutation strategies are devised to find the method that achieves
the minimum bandwidth overhead for each website.

Figure 3 illustrates the workflow of WFGUARD. In general,
WFGUARD takes a bunch of traces of a target website as
input and output the mutated traces as well as corresponding
injection patterns that successfully deceive WF classifiers.
Particularly, we first choose several representative traffic traces
that can be classified correctly by the classifiers for each
website as seeds so as to initiate a seed pool. Then a seed x is
selected from the pool for seed mutation. To find the efficient
and effective dummy cell injection pattern, we leverage the
fine-grained neuron information of DL-based WF classifiers to
design a joint optimization function. The function incorporates
two parts: maximizing the neurons values and misclassification
possibilities of DL-based WF classifiers. To maximize the
objective function, we first calculate the gradient, which is
the partial derivative of the function with respect to trace x.
Then, gradient ascent is employed to maximize the function. In
particular, an injection position and direction can be derived
from the gradient after the processing, thereby guiding the
mutation on the original trace. What is more, two mutation
strategies (i.e., only injecting +1 or injecting +1/-1) are con-
ducted on the undefended trace for later comparison. Then the
variant trace is sent to DL-based WF classifiers to determine
whether the variant trace succeeds in causing misclassification.
If misclassification occurs, we output the variant trace and
the injection pattern; if not, we iterate the mutation procedure
on the variant trace until reaching the maximum number of
mutations, in which case we discard the trace. Then a new
seed is retrieved without repetition from the seed pool for a

new round of trace mutation.
Based on the workflow, WFGUARD is mainly comprised of

five stages, i.e., seed pool initialization & seed selection, joint
optimization function, trace mutation, dummy cell injection
and variant trace verification. Each of these stages is detailed in
the rest of this section. In addition, the WFGUARD algorithm
is provided in Algorithm 1.

Algorithm 1 WFGUARD Algorithm
1: Input:
2: ori_tra← original traces
3: seed_pool← undefensed traces from each website
4: strategies← neuron selection strategies
5: dnn← DL website fingerprinting attack model
6: tra_len← real number of cells in each trace
7: inject_time← injection times of the current trace
8: MI ← the maximum number of mutations
9: Output:

10: inject_index← injection locations of dummy cells
11: inject_val←injection directions of dummy cells
12: gen_tra←successful variant traces
13: Begin:
14: gen_tra = []
15: tra_len[] = Count_trace(ori_tra)
16: MI [] = α ∗ tra_len[]
17: for x in seed_pool:
18: while (inject_time ≤MI)
19: c1, c0 = dnn.predict(x)
20: neurons = selection(dnn, strategies)
21: obj = λ1

∑m
i ni(x) + λ2(c1(x)− c0(x))

22: ∆ = ∂obj / ∂x
23: inject_num, inject_index = f(∆)
24: x = injection(x, inject_num, inject_index)
25: c1, c0 = dnn.predict(x)
26: if(c1 > c0):
27: output(x)
28: break
29: else:
30: continue

D. Seed Pool Initialization & Seed Selection

We construct an initial seed pool using pre-processed traffic
traces for each website. Specifically, we select q representative
traces for each website that can be identified using the DL-
based WF classifiers with an accuracy rate above 95%. The

representative traces act as the seeds for subsequent seed
mutation.

We take a seed pool of a website as an example to illustrate
the following steps. After constructing the initial seed pool
of the website, we retrieve a seed x from the pool without
repetition for trace mutation. For each seed in the seed pool,
an upper bound of the number of mutations is used to control
bandwidth overhead, namely the ratio of the number of the
injected dummy cells to the number of the cells in the original
trace. Denote the number of maximum mutations as MI , to be
the product of the number of cells in the original trace and a
predefined coefficient α. In this way, we can effectively restrict
the bandwidth overhead from exceeding α. The optimal value
for α is determined through empirical experiments discussed
in Section IV.

E. Joint Optimization Function
For the trace retrieved from the seed pool, we use a joint

optimization function to guide effective mutations on the trace.
We utilize the neuron information of WF classifier to design
joint optimization function. The joint optimization function
includes maximizing the values of selected activated neurons
and misclassifications. If a mutated input is found to increase
the values of activated neurons, it can cause the classifier to
identify the input as a wrong label [11], [25]. Hence, we design
a joint optimization function to assist WFGUARD to find the
effective injection pattern. The function, also referred to as the
objective function, is defined as

obj(x) = λ1

m∑
i

ni(x) + λ2(c1(x)− c0(x)) (1)

where ni(x) is the value of a selected neuron of which the
value is intended to be increased, and m is the number of
the selected neurons. The optimal value for m is determined
through empirical experiments discussed in Section IV.

Since increasing the values of neurons during mutation can
mislead the classifier, the first part of the expression

∑m
i ni(x)

in Equation (1) is designed in an attempt to maximize the
sum values of all pre-selected neurons so as to cause the
misclassifications. In order to maximize the neurons values,
we propose two heuristic neuron selection strategies based
on the activation count for each neuron. The activation count
(denoted as C) for each neuron is obtained in advance by
feeding p traces of each website into a WF classifier and
count the number of activation for each neuron, namely
C ∈ [0, p]. We consider both most and least frequently
activated neurons represent the features of the website. They
can potentially stimulate misclassifications in DL-based WF
classifiers. Hence, we propose the following two selection
strategies and compare their effectiveness in experiments:

• Strategy 0: Select neurons that have been most frequently
activated in the past.

• Strategy 1: Select neurons that have been least frequently
activated in the past.

Since we need to increase the confidence of the mutated
variant traffic, the second part of the expression c1(x)− c0(x)

is designed to maximize the gap between the probability of
being classified as the correct class label and the highest
probability of being misclassified. c0(x) signifies the prob-
ability of the seed x being classified as the correct class label,
while c1(x) denotes the highest probability value among all
incorrect class labels predicted by WF classifiers. If c1(x) is
greater than c0(x), it indicates that a successful variant trace
is found, which can mislead WF classifiers. Therefore, we try
to maximize the second part in the joint optimization function
to further increase the confidence. The variables λ1 and λ2 are
used to balance these two parts. The values for these variables
are determined through empirical experiments discussed in
Section IV.

F. Trace Mutation

Trace mutation involves obtaining the gradients by comput-
ing the partial derivative of the objective function in terms of
the input variable x (i.e., seed), and determining the injection
positions and directions of dummy cells in each representative
trace of a website based on the gradients. The gradient is in
the form of a gradient vector, of which the dimension aligns
with that of the input seed, as defined in the following:

∆ =
∂odj(x)

∂x
(2)

We employ the gradient ascent technique to maximize the
objective function for increasing the neurons values and max-
imizing the confidence of the misclassifications of the DL-
based WF classifiers.

WFGUARD adopts two mutation strategies, defined as
f(∆): (1) only injecting a dummy Tor cell from the Tor client
to the exit node (i.e., inserting +1 into the trace), and (2)
injecting a dummy Tor cell in either direction (i.e., inserting
+1 or -1 into the trace). When only inserting +1, the index
with the maximum value in the gradient vector is selected as
the injection position. The processing of the gradient when
only injecting +1 is defined as follows:

f+1(∆) = {sign(∆j), j|Max(∆j)} (3)

The sign(∆j) pertains to extracting the sign of the jth (0 ≤
j ≤ d) element of the gradient vector, where d represents the
dimension of the gradient, which is the same as the dimension
of the input trace.

In the second mutation strategy, WFGUARD can inject
either +1 or -1. In such case, the index with the maximum
absolute value in the gradient vector is chosen as the injection
position. We insert +1/-1 if the gradient is positive/negative in
the injection position. The processing of gradient is defined as
follows:

f+1/−1(∆) = {sign(∆j), j|Max(abs(∆j))} (4)

where abs() represents the function to obtain the absolute
value of the gradient. As a result, the function f(∆) gen-
erates the injection patterns, encompassing both the injection
positions and the injection directions.

G. Dummy Cell Injection

After obtaining the injection patterns, a mutated trace (de-
noted as x + f(∆)) is generated by injecting dummy cell
following the injection patterns as shown in Equation (5). It
is essential to ensure that the injected cells comply with the
constraint of traffic trace. That is, dummy cells should not be
injected into the part of the padded cells in the current trace.
By carefully handling the injection process while adhering to
the constraint mentioned above, WFGUARD ensures that the
generated mutated trace sample x aligns with the features of
traffic trace, thereby effectively increasing the neurons values
and misclassifications of the DL-based WF classifiers.

x = inject(x, f(∆)) (5)

H. Variant Trace Verification

The mutated trace sample x is fed into the WF classifiers
for classification prediction. If x successfully misleads the
WF classifiers, x is a favorable mutation sample. However,
if it fails to deceive classifiers and the maximum number of
mutations for the trace is not reached, we update the objective
function with x and continue mutating the trace following the
same procedure. Otherwise, if it reaches the maximum number
of mutations, we discard the trace and select a new seed from
the seed pool for mutation.

IV. EXPERIMENTAL EVALUATION

We evaluate the effectiveness and efficiency of our WF-
GUARD with extensive experiments. We implement WF-
GUARD using TensorFlow-GPU 1.15.0 and Keras 2.3.1 frame-
works. All experiments are conducted on Ubuntu 18.04 system
and 6 various NVIDIA GPU cards, including 2 Tesla K80 and
4 1080Ti cards.

A. Dataset

We validate the effectiveness of WFGUARD with a dataset
collected by Sirinam et al. [31]. This dataset is commonly
utilized to evaluate the efficiency of DL-based WF attacks and
defenses. For the closed-world scenario, the dataset includes
the most popular 95 websites from Alexa, each consisting
of 1000 traces. It is used to train the DF [31] and Var-
CNN [3] classifiers, where the ratio of training, validation,
and test sets is 8:1:1. The open-world dataset is composed
of an unmonitored dataset and the monitored dataset used
in closed-world scenario. The unmonitored dataset includes
40,000 websites, each with one trace. We fix the length of
input trace as 5000 in all experiments.

B. Metrics

The metrics used to evaluate WFGUARD include the band-
width overhead (BWO), and detection rate (DR). We do not
evaluate time overhead since WFGUARD solely performs
dummy cell injection on traces, resulting in no time overhead.

• BWO represents the ratio of the number of dummy Tor
cells injected into the trace to the number of actual total
Tor cells of the original trace. It is used to measure

the defense overhead in both closed-world scenario and
open-world scenario. The larger BWO introduced by the
defense, the less efficient the defense is.

• DR is utilized to evaluate the effectiveness of the WF
classifiers in correctly classifying traffic traces. A lower
DR indicates higher defense effectiveness. DR is defined
as the ratio of the number of traces correctly classified
by attackers to the total number of traces.

C. Experimental Setup

The seed pool initialization, as described in Section III,
involves experimentally selecting q representative traces that
are accurately recognized by DL-based WF classifiers with a
detection rate exceeding 95% for each website. Therefore, for
all seeds in the seed pool, applying WFGUARD can result in
at most q effective injection patterns for each website. The
optimal value of q are determined through experiments.

As for the joint optimization function, we propose two
neuron selection strategies: select neurons that have been
activated the most in the past (Strategy 0) and select neurons
that have been least frequently activated in the past (Strategy
1). To obtain the activation count of each neuron, WFGUARD
feeds 100 traces of each website into DL-based WF classifiers
and count the number of activation for each neuron, thus we
have the activation count C ∈ [0, 100].

The parameters, i.e., λ1 and λ2, in the joint optimization
are weight coefficients that measure the importance of each
objective, as shown in Equation (1). In order to balance the
importance of neurons values and misclassification possibility
in the joint optimization function, we set λ1 = 1

m∗τ and λ2 =
1, where m represents the number of selected neurons, and τ
is the threshold for activating neurons. The optimal value for
τ is determined through empirical experiments.

WFGUARD aims to find an effective injection pattern for
each of the 95 websites. Thus, for each website, we conduct
experiments to further evaluate the effectiveness of some
combinations of these q injection patterns, each of which
derives from a single trace of the website. We first apply
q injection patterns to the training dataset (800 traces). For
each injection pattern, we feed the corresponding 800 injected
traces into the DL-based WF classifiers to obtain detection
rates. Since we have q injection patterns, q detection rates are
obtained in total. In the first case denoted as WFGUARD-light,
we combine the two injection patterns with top-2 smallest
detection rates. In the second case denoted as WFGUARD-
heavy, we combine the three patterns with top-3 smallest
detection rates, which generates more bandwidth overhead and
lower detection rate. We do not include the experiment results
of only applying one injection pattern since it apparently
results in high classification accuracy.

D. Experimental results

Baseline: WFGUARD first evaluates performance of the two
WF classifiers, DF [31] and Var-CNN [3], in both the closed-
world and open-world scenarios on the undefended dataset.
The evaluation serves as the baseline for comparing with the

TABLE I
CLASSIFIERS RESULTS ON THE NO-DEFENDED DATASET IN THE

CLOSED-WORLD (CW) AND OPEN-WORLD (OW) SETTINGS

Models DF Var-CNN
CW 98.35% 98.40%
OW 96.80% 97.23%

proposed defense in this paper. The results are presented in
Table I. As we can see from Table I, in the closed-world
scenario, DF and Var-CNN achieve high detection rate of
98.35% and 98.40% respectively. However, compared with
that in the closed-world scenario, the DR decreases in the
open-world scenario due to the significantly increased data
size. Though the DR of two classifiers are still above 96%.
Parameters Tuning: A large number of experiments are con-
ducted to tune the parameters used in WFGUARD, including
τ , α, and q. τ is a threshold used to measure whether a neuron
is activated. α is a coefficient, which is utilized to control the
bandwidth overhead. q is the number of seeds for each website,
which also determines the number of injection patterns that we
can obtain from different mutation strategies.

The relationship between different τ and detection rate
of DL-based WF classifiers is shown in Figure 4, in which
the neuron selection strategy is Strategy 0 and the mutation
strategy is "+1". Note that these strategies are also adopted in
experiments corresponding to Figure 5 and Figure 6. Figure 4
illustrates that setting τ to 0.2 within the range of [0.1, 0.5] in
the closed-world scenario results in the minimum DR for the
DF model, while setting τ to 0.3 in the open-world scenario
also leads to the minimum DR. According to the results,
τ is set to 0.2 in the closed-world scenario and 0.3 in the
open-world scenario in the subsequent experiments. Figure 5
shows that within the range of α ∈ [5%, 25%], setting α to
20% results in the minimum DR for the DF model. Figure 6
illustrates that within the range of ∈ [5, 25], setting q to 20
results in the minimum DR for the DF model results in the
optimal performance.
Closed-world experiment results analysis: After determining
the optimal threshold τ = 0.2, we first explore the impact of
selecting different numbers of neurons on the detection rate of
the DF and Var-CNN models under different neuron selection
strategies. As shown in Figure 7, when using neuron selection
Strategy 0, WFGUARD shows better defense performance
on the DF and Var-CNN models compared to Strategy 1.
Therefore, we determine Strategy 0 as our neuron selection
strategy.

Then, further exploration of the defense effectiveness with
different mutation strategies is conducted. Figure 8 shows the
impact of two different mutation strategies on the detection
rate of DF and Var-CNN models. In both situations, only
injecting +1 outperforms the other strategy.

Figure 9 illustrates the generalization of WFGUARD, which
is reflected by its ability to reduce the detection rate of an
unknown model when injecting the injection patterns derived
from attacking the known model with known structure. Then
the patterns are injected the patterns into the original traffic

and fed into the unknown classifier. To validate the gener-
alization of WFGUARD, the injection patterns obtained from
experiments on DF model, where the neuron selection strategy
is Strategy 0 and the number of neurons is 50 according to
Figure 7, are used to defend the Var-CNN model. As shown in
Figure 9, the results demonstrate that WFGUARD effectively
reduces the detection rate of the Var-CNN model, regardless of
whether the mutation strategy is only +1 or +1/-1. Particularly,
in the case of +1/-1 injection, the injection patterns generated
from the DF model prove to be more effective to the DF model
than to the Var-CNN model.

Table II presents a comparison of defense effectiveness and
overhead among different defense methods in the closed-world
scenario. The results in the table indicate that WFGUARD-
light achieves a bandwidth overhead of 14.18% to reduce
the detection rate of DF and Var-CNN to below 8.8%. This
is approximately 14% lower in bandwidth overhead com-
pared to the BAND defense method, with a similar defense
effectiveness to BAND. On the other hand, WFGUARD-
heavy outperforms BAND with over 4% lower bandwidth
overhead while achieving better defense effectiveness. Further-
more, when compared to Mockingbird and WTF-PAD, both
WFGUARD-light and WFGUARD-heavy achieve significantly
lower DRs with bandwidth overhead reduced by 10% to 40%.
The reduction in DRs ranges from around 30% to 82%,
demonstrating the superiority of WFGUARD over existing
defense methods.

TABLE II
COMPARISON OF WFGUARD WITH OTHER DEFENSE METHODS IN THE

CLOSED-WORLD SCENARIO.

Models
Methods WFGUARD-

light
WFGUARD-

heavy BAND Mocking
Bird

WTF-
PAD

DF BWO 14.18% 21.43% 25.02% 58.02% 63.23%
DR 8.80% 5.62% 5.12% 38.11% 90.85%

Var-CNN BWO 11.04% 15.32% 25.07% 58.12% 63.12%
DR 4.43% 2.15% 1.51% 35.21% 94.02%

Open-world experiment results analysis: We examine the
impact of different neuron selection strategies on the detection
rate of the DF and Var-CNN models in the open-world
scenario. As shown in Figure 10, when neuron selection
Strategy 0 is adopted, the defensive effect of WFGUARD on
both the DF and Var-CNN models is superior to when Strategy
1 is used. The WFGUARD, when using Strategy 0, effectively
reduces the detection rate of both DL-based WF classifiers to
their minimum values. By setting the number of neurons to
30 and 50 respectively, WFGUARD reduces the detection rate
of the DF and Var-CNN attack models to their lowest values
of 10.73% and 6.00% respectively.

The aforementioned results assume that the mutation op-
eration is only injecting +1. To fully validate the WFGUARD
defense method, it is necessary to further explore the defensive
effects of different mutation strategies. Figure 11 shows the
impact of two different mutation strategies on the detection
rate of the DF and Var-CNN models under neuron selection
Strategy 0 in the open-world scenario. The results indicate

0.0 0.1 0.2 0.3 0.4 0.5 0.60.00

0.05

0.10

0.15

0.20

0.25

0.30
DR

 o
f W

FG
UA

RD
 Closed-world Open-world

Fig. 4. Different selection of τ

0 5 10 15 20 25 30
(%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

DR
 o

f W
FG

UA
RD

Closed-world Open-world

Fig. 5. Different selection of α

5 10 15 20 25 30 35
q

0.00

0.05

0.10

0.15

0.20

0.25

0.30

DR
 o

f W
FG

UA
RD

 Closed-world Open-world

Fig. 6. Different selection of q

0 10 20 30 40 50 60
Number of Selected Neurons

0.00

0.05

0.10

0.15

0.20

0.25

0.30

DR
 o

f C
la

ss
ifi

er
s

 DF Var-CNN
Strategy=0

Strategy=1

Strategy=0

Strategy=1

Fig. 7. Different neuron selection strategies
in the closed-world scenario.

0 10 20 30 40 50 60
Number of Selected Neurons

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

DR
 o

f C
la

ss
ifi

er
s

 DF Var-CNN
Injecting +1
Injecting +1/-1

Injecting +1
Injecting +1/-1

Fig. 8. Different mutation operations in the
closed-world scenario.

Fig. 9. The generalization of WFGUARD
in the closed-world scenario.

0 10 20 30 40 50 60
Number of Selected Neurons

0.00

0.05

0.10

0.15

0.20

0.25

0.30

DR
 o

f C
la

ss
ifi

er
s

 DF Var-CNN
Strategy=0

Strategy=1

Strategy=0

Strategy=1

Fig. 10. Different neuron selection strategies
in the open-world scenario.

0 10 20 30 40 50 60
Number of Selected Neurons

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

DR
 o

f C
la

ss
ifi

er
s

 DF Var-CNN
Injecting +1
Injecting +1/-1

Injecting +1
Injecting +1/-1

Fig. 11. Different mutation operations in the
open-world scenario.

Fig. 12. The generalization of WFGUARD
in the open-world scenario.

that WFGUARD shows better performance on both the DF
and Var-CNN models when only injecting +1, as compared
to injecting +1/-1 . Furthermore, the detection rate of the DF
model can be reduced to the lowest level when the number of
neurons is 50 and only +1 is injected.

Similar to the closed-world scenario, we also validated the
generalization of WFGUARD in the open-world scenario, and
the results are depicted in Figure 12. No matter only injecting
+1 or injecting +1/-1 is used as the mutation strategy, WF-
GUARD can effectively reduce the detection rate of the Var-
CNN model, especially when injecting +1/-1 is adopted, and
the injection pattern generated from the DF model effectively
reduces the detection rate of the Var-CNN model to 10.7%.
The results indicate that in both open-world and closed-world
scenarios, the WFGUARD defense method is generalized and
deceive unknown models.

Table III summarizes the comparison between WFGUARD
and other existing defense methods in terms of BWO and
DR in the open-world scenario. The results indicate that
WFGUARD-light can reduce the detection rate of DF and Var-
CNN to below 10.73% with a BWO of 14.18%, which is 40%
and 30% lower in BWO and DR respectively than Surakav-
light. Compared with Surakav-heavy, WFGUARD-heavy can
achieve better defense effects with about 55% less bandwidth
overhead. Compared with WTF-PAD, the WFGUARD defense
method even achieves a lower detection rate of about 81%
with 13% less bandwidth overhead. All the results show that
WFGUARD is superior to existing defense methods.

V. RELATED WORK

This section provides an overview and brief analysis of
current WF attacks and WF defenses.

TABLE III
COMPARISON OF WFGUARD WITH OTHER DEFENSE METHODS IN THE

OPEN-WORLD SCENARIO.

Models
Methods WFGUARD-

light
WFGUARD-

heavy
Surakav-

light
Surakav-

heavy
WTF-
PAD

DF BWO 15.52% 25.85% 55.11% 81.02% 28.33%
DR 10.73% 6.72% 39.40% 8.14% 89.75%

Var-CNN BWO 11.22% 24.85% 55.21% 80.93% 27.02%
DR 6.00% 3.47% 39.70% 6.31% 88.80%

A. WF attacks

ML-based WF attacks: Panchenko et al. [24] first propose
a WF attack aginst Tor using SVM to classify websites.
Following that, ML-based WF attacks, such as k-NN [33] and
k-FP [12], are introduced to enhance attack accuracy. CUMUL
[23], which is considered the state-of-the-art ML-based WF
attack, can achieve an accuracy of up to 92% in a closed-
world scenario. However, a limitation of ML-based WF attacks
is the need for expert knowledge to manually extract a set of
effective features from the original traffic in order to train
machine learning models.
DL-based WF attacks: In order to overcome the limita-
tions of ML-based WF attacks, Abe et al. [1] first propose
implementing WF attacks using Stacked Denoising Autoen-
coder (SDAE), a deep learning model, to automatically ex-
tract features of different websites. To further improve the
accuracy of WF attacks, Sirinam et al. [31] propose the
Deep Fingerprinting (DF). They design a more complex CNN
to automatically extract website fingerprints, achieving an
impressive accuracy of over 98% on closed-world datasets.
Tik-Tok [27] directly uses the CNN model in DF attack, and
validates the effectiveness of different types of sequences of
time and direction information inputted into the model. Bhat
et al. [3] employ dilated causal convolutions in their attack,
Var-CNN, achieving a 97.8% attack accuracy in the closed-
world scenario. More recently, Shen et al. [30] propose Robust
Fingerprinting (RF). Time and direction information are both
included in the RF. The RF attack method shows higher attack
accuracy than DF, Var-CNN, and Tik-Tok in various defense
methods.

B. WF defenses

The development of WF defense is intended to fight against
WF attacks by concealing traffic patterns and ensuring the
anonymity of user communications.
Feature-suppression-based defenses: Using feature obfusca-
tion to alter traffic features is one of the primary methods
employed for defense. Feature suppression primarily relies on
padding. The BUFLO family [4], [5], [8] utilizes constant-
rate padding to maintain a fixed traffic pattern, while Walkie-
Talkie [35] pads each group of traffic with the pattern of a
supersequence to reduce the accuracy of attackers. However,
both of these methods introduce substantial time overhead.
To minimize time overhead, WTF-PAD [16] uses adaptive
padding to fill larger time gaps. Similarly, FRONT achieves
zero delay by inserting dummy packets in the front of the
traffic sequence.

Feature-morphing-based defenses: Feature suppression
through padding is untargeted, whereas traffic morphing in-
volves altering features of one class to resemble those of
another class. MockingBird [26] utilizes the idea of adversarial
examples and iteratively inserts adversarial perturbations into
the original trace to achieve misclassification. BAND [22],
also leveraging the concept of adversarial attacks, distinguishes
itself from MockingBird by generating suitable perturbation
vectors without the need for prior knowledge of the trace
pattern. This defense against Var-CNN significantly reduces
the attacker’s accuracy to 16% with a mere 2% bandwidth
overhead. Gong et al. [10] propose Surakav, a Generative
Adversarial Network (GAN) based defense. Surakav leverages
the generated sending patterns from the GAN to guide packet
transmission and dynamically adjusts the data waiting to be
sent in the buffer. The authors evaluate their deployed defense
and find that it effectively reduces the TPR of current WF
attacks.

VI. CONCLUSION

In this paper, we introduce WFGUARD, a novel fuzzing-
testing-based traffic morphing defense approach against DL-
based WF attacks. Through the use of fuzzing testing DNN
techniques, we manage to discover injection patterns for each
website that can considerably decrease the accuracy of DL-
based WF classification. We design a novel joint optimization
function, leveraging neuron information, to successfully in-
duce misclassification of DL-based WF classifiers. Extensive
experiments are carried out to assess the feasibility and ef-
fectiveness of WFGUARD against DL-based WF classifiers.
The results of our experiments are promising, illustrating a
significant reduction in accuracy of DL-based WF classifiers to
approximately 4.43% while introducing only a minimal band-
width overhead of below 11.04%. Furthermore, WFGUARD
exhibits potential in defending against DL-based traffic analy-
sis attacks, thereby enhancing the protection of communication
privacy. As the landscape of WF attacks continues to evolve,
our method holds the potential to provide robust protection
and maintain the anonymity of user communications.

ACKNOWLEDGMENTS

This research was supported in part by National Natural
Science Foundation of China Grant Nos. 62022024, 61972088,
62232004, and 62202099, by CCF-Huawei Populus Grove
Fund, by Jiangsu Provincial Natural Science Foundation of
China Grant No. BK20220806, Jiangsu Provincial Key R&D
Programs Grant Nos. BE2021729, BE2022680, BE2022065-
5, Jiangsu Provincial Key Laboratory of Network and Infor-
mation Security Grant No. BM2003201, Key Laboratory of
Computer Network and Information Integration of Ministry
of Education of China Grant No. 93K-9, and Collaborative
Innovation Center of Novel Software Technology and Indus-
trialization. Any opinions, findings, conclusions, and recom-
mendations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] K. Abe and S. Goto. Fingerprinting attack on Tor anonymity using deep
learning. Proceedings of the Asia Pacific Advanced Network (APAN),
42:15–20, 2016.

[2] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mohaisen. DFD:
Adversarial Learning-based Approach to Defend Against Website Fin-
gerprinting . In Proceedings of the 39th IEEE International Conference
on Computer Communications (INFOCOM), pages 2459–2468, 2020.

[3] S. Bhat, D. Lu, A. Kwon, and S. Devadas. Var-CNN: A Data-Efficient
Website Fingerprinting Attack Based on Deep Learning. In Proceedings
on Privacy Enhancing Technologies (PET), volume 2019, pages 292–
310, 2019.

[4] X. Cai, R. Nithyanand, and R. Johnson. CS-BuFLO: A Congestion Sen-
sitive Website Fingerprinting Defense. In Proceedings of the Workshop
on Privacy in the Electronic Society (WPES), pages 121–130, 2014.

[5] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. A
systematic approach to developing and evaluating website fingerprinting
defenses. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 227–238, 2014.

[6] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a
Distance: Website Fingerprinting Attacks and Defenses. In Proceedings
of the ACM Conference on Computer and Communications Security
(CCS), pages 605–616, 2012.

[7] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter, J. Filter,
T. Engel, K. Wehrle, and A. Panchenko. Trafficsliver: Fighting website
fingerprinting attacks with traffic splitting. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
pages 1971–1985, 2020.

[8] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-Boo,
I still see you: Why efficient traffic analysis countermeasures fail. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P),
pages 332–346, 2012.

[9] J. Gong and T. Wang. Zero-delay Lightweight Defenses against Website
Fingerprinting. In Proceedings of the USENIX Security Symposium
(Security), pages 717–734, 2020.

[10] J. Gong, W. Zhang, C. Zhang, and T. Wang. Surakav: generating
realistic traces for a strong website fingerprinting defense. In 2022
IEEE Symposium on Security and Privacy (SP), pages 1558–1573. IEEE,
2022.

[11] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun. Dlfuzz: Differential
fuzzing testing of deep learning systems. In proceedings of the 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE/ESEC),
pages 739–743, 2018.

[12] J. Hayes and G. Danezis. k-fingerprinting: a Robust Scalable Website
Fingerprinting Technique. In Proceedings of the USENIX Security
Symposium (Security), pages 1187–1203, 2016.

[13] S. Henri, G. García, P. Serrano, A. Banchs, P. Thiran, et al. Protect-
ing against website fingerprinting with multihoming. Proceedings on
Privacy Enhancing Technologies, 2020(2):89–110, 2020.

[14] C. Hou, G. Gou, J. Shi, P. Fu, and G. Xiong. Wf-gan: Fighting back
against website fingerprinting attack using adversarial learning. In 2020
IEEE Symposium on Computers and Communications (ISCC), pages 1–
7. IEEE, 2020.

[15] N. Humbatova, G. Jahangirova, and P. Tonella. Deepcrime: Mutation
testing of deep learning systems based on real faults. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), pages 67–78, 2021.

[16] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. Toward
an Efficient Website Fingerprinting Defense. In Proceedings of the
European Symposium on Research in Computer Security (ESORICS),
volume 9878, pages 27–46, 2016.

[17] D. Li, Y. Zhu, M. Chen, and J. Wang. Minipatch: Undermining dnn-
based website fingerprinting with adversarial patches. IEEE Transactions
on Information Forensics and Security (TIFS), 17:2437–2451, 2022.

[18] Z. Ling, J. Luo, K. Wu, W. Yu, and X. Fu. TorWard: Discovery
of Malicious Traffic over Tor. In Proceedings of the 33rd IEEE
International Conference on Computer Communications (INFOCOM),
2014.

[19] Z. Ling, J. Luo, D. Xu, M. Yang, and X. Fu. Novel and Practical
SDN-based Traceback Technique for Malicious Traffic over Anonymous
Networks. In Proceedings of the 38th IEEE International Conference
on Computer Communications (INFOCOM), pages 1180–1188, 2019.

[20] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia. A New Cell
Counting Based Attack Against Tor. In Proceedings of the ACMConfer-
ence on Computer and Communications Security (CCS), pages 578–589,
November 2009.

[21] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, R. Perdisci,
et al. Httpos: Sealing information leaks with browser-side obfuscation
of encrypted flows. In NDSS, volume 11, 2011.

[22] M. Nasr, A. Bahramali, and A. Houmansadr. Defeating {DNN-Based}
traffic analysis systems in {Real-Time} with blind adversarial pertur-
bations. In 30th USENIX Security Symposium (USENIX Security 21),
pages 2705–2722, 2021.

[23] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle,
and T. Engel. Website Fingerprinting at Internet Scale. In Proceedings
of the Network Distributed System Security Symposium (NDSS), 2016.

[24] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website Fingerprint-
ing in Onion Routing based Anonymization Networks. In Proceedings
of the ACM Workshop on Privacy in the Electronic Society (WPES),
pages 103–114, 2011.

[25] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In proceedings of the 26th Symposium
on Operating Systems Principles, pages 1–18, 2017.

[26] M. S. Rahman, M. Imani, N. Mathews, and M. Wright. Mockingbird:
Defending Against Deep-LearningBased Website Fingerprinting Attacks
With Adversarial Traces. IEEE Transactions on Information Forensics
and Security (TIFS), pages 1594–1609, 2020.

[27] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara, and
M. Wright. Tik-Tok: The Utility of Packet Timing in Website Finger-
printing Attacks. In Proceedings on Privacy Enhancing Technologies
(PET), pages 5–24, 2020.

[28] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and W. Joosen.
Automated Website Fingerprinting through Deep Learning. In Proceed-
ings of the Network Distributed System Security Symposium (NDSS),
2018.

[29] A. M. Sadeghzadeh, B. Tajali, and R. Jalili. Awa: Adversarial website
adaptation. IEEE Transactions on Information Forensics and Security
(TIFS), 16:3019–3122, 2021.

[30] M. Shen, K. Ji, Z. Gao, Q. Li, L. Zhu, and K. Xu. Subverting website
fingerprinting defenses with robust traffic representation.

[31] P. Sirinam, M. Juarez, M. Imani, and M. Wright. Deep Fingerprinting:
Undermining Website Fingerprinting Defenses with Deep Learning. In
Proceedings of the ACM Conference on Computer and Communications
Security (CCS), pages 1928–1943, 2018.

[32] The Tor Project, Inc. Tor: Anonymity Online. https://www.torproject.
org/, 2023.

[33] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. Ef-
fective Attacks and Provable Defenses for Website Fingerprinting. In
Proceedings of the USENIX Security Symposium (Security), pages 143–
157, 2014.

[34] T. Wang and I. Goldberg. Improved Website Fingerprinting on Tor. In
Proceedings of the ACM Workshop on Privacy in the Electronic Society
(WPES), pages 201–212, 2013.

[35] T. Wang and I. Goldberg. Walkie-talkie: An efficient defense against
passive website fingerprinting attacks. In Proceedings of the USENIX
Security Symposium (Security), pages 1375–1390, 2017.

[36] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, and et.al. Deephunter: A coverage-
guided fuzz testing framework for deep neural networks. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), pages 146–157, 2019.

[37] P. Zhang and a. Q. D. Bin Renand Hai Dong. Cagfuzz: Coverage-
guided adversarial generative fuzzing testing for image-based deep
learning systems. IEEE Transactions on Software Engineering (TSE),
48(11):4630–4646, 2021.

[38] Z. Zhuo, Y. Zhang, Z.-l. Zhang, X. Zhang, and J. Zhang. Website
fingerprinting attack on anonymity networks based on profile hidden
markov model. IEEE Transactions on Information Forensics and
Security (TIFS), 13(5):1081–1095, 2017.

