IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

Multiagent-Based Allocation of Complex
Tasks in Social Networks

Wanyuan Wang, Student Member, IEEE, Yichuan Jiang*, Senior Member, IEEE

Abstract—In many social networks (SNs), social individuals often need to work together to accomplish a complex task (e.g.,
software product development). In the context of SNs, due to the presence of social connections, complex task allocation must
achieve satisfactory social effectiveness; in other words, each complex task should be allocated to socially close individuals to
enable them to communicate and collaborate effectively. Although several approaches have been proposed to tackle this so-
called social task allocation problem, they either suffer from being centralized or ignore the objective of maximizing the social
effectiveness. In this study, we present a distributed multiagent-based task allocation model by dispatching a mobile and
cooperative agent to each subtask of each complex task, which also addresses the objective of social effectiveness
maximization. With respect to mobility, each agent can transport itself to a suitable individual that has the relevant capability.
With respect to cooperativeness, agents can cooperate with each other by forming teams and moving to a suitable individual
jointly if the cooperation is beneficial. Our theoretical analyses provide provable performance guarantees of this model. We also
apply this model in a set of static and dynamic network settings to investigate its effectiveness, scalability and robustness.
Through experimental results, our model is determined to be effective in improving the system load balance and social
effectiveness; this model is scalable in reducing the computation time and is robust in adapting the system dynamics.

Index Terms—Complex task allocation, social networks, multiagent, social effectiveness, load balancing

1 INTRODUCTION

Today’s many online social networks (SNs) [1], such as
LinkedIn [2] and GitHub [3], provide a good market-

ing platform for enterprises, organizations or indi-
viduals conducting business. Through social network
platforms, the enterprises (organizations or individuals)
post their tasks to all users and recruit a set of profession-
al users to accomplish their tasks. In this so-called social
task allocation problem, we especially focus on the cases
where tasks are complex. The complex tasks differ from
common tasks in the sense that each complex task con-
sists of a set of interdependent subtasks that require co-
ordination with one another. In the context of SNs, the
success of completing a complex task depends not only
on how professional the recruited users are [4][5] and
how many workloads these recruited users undertake
[6]1[7], but also on how effectively they can communicate
to perform the interdependent subtasks [8-10].

We can consider the following scenario as a motivating
example. An IT manager in LinkedIn wants to recruit a
team of software engineers that can meet the skill re-
quirements of a complex software product P, which in-
cludes six activities {Requirement Analysis (RA), Architec-
ture Design (AD), Implementation (IM), Testing (TE), De-
ployment (DE), Maintenance (MA)}. During software de-
velopment, collaboration among the developers is often
required for accomplishing the interdependent activities
[11]. The interdependent relationships among these activ-
ities are shown in Fig. 1(a), where an edge between two
activities indicates that the engineers who perform the
two activities must communicate to complete them suc-

The authors are with the School of Computer Science and Engineering,
Southeast University, Nanjing 211189, China, and also with the Key
Laboratory of Computer Network and Information Integration (South-
east University), Ministry of Education, China.

*Corresponding author: Yichuan Jiang, email: yjiang@seu.edu.cn.

Manuscript received 28 June 2014, revised 20 October 2014, accepted 7 Febru-
ary 2015.

(RA) {RA,AD,IM}
N {RA 2___(a,

I é/\,,,
AD) N

(AD) / 1 (m,MA} \ {TE,DEMA}
Yo =S
// X"\ {Im,TE) \3 (93— ——06)
my—— TE) (ag \1
- N~ an" 2
4 0s

- N
(DE———(MA) T
\DE) M9 {DE}

. CY (b)
RA) AN an A)
@) @ O

N T)
2D\ _ - N 5 N
AD\ Py B
e
T - ao 15 ~ (a>
WL, e e

, L -
—~ | = P ~ 31
‘\T,E/\Vé; (E— ‘\‘,’5‘1 B @E‘ ‘a3 12
o - ! = I
(DE) (pe———(as'1 65\ Ty
= \Z ;r/ 1 == o,

— — — / —~ A
W A W a
&) @ ——(ay & (@9

(© (d) (e

Fig. 1. A simple complex task allocation example in a social network.
(a) the complex task P={RA, AD, IM, TE, DE, MA}; (b) the social
network; (c) task allocation Scheme 1 of satisfying P’s skill require-
ments (the arrow represents the task allocation and the dash line
represents the necessary communication and the number attached
to each dash line represents its communication cost); (d) task alloca-
tion Scheme 2 of alleviating employers’ workloads; (e) task allocation
Scheme 3 of improving employers’ communication efficiency.

cessfully. For example, the engineer who performs Testing
must communicate with the Implementation engineer to
debug and optimize the software. Next, assume that there
are six engineers {aili=1,...,6} who are interconnected by a
social network, and each is endowed with certain skills:
ar={RA}, a:={AD,IM,TE}, as={IM}, a+={IM,TE}, as={DE} and
a={RA,DE,MA} (Fig. 1(b)). In Fig. 1(b), the connections
among the engineers represent communication possibili-
ties and the number attached to each connection repre-
sents the communication cost. The smaller the communi-
cation cost, the less effort is required for efficient commu-

nication [12-15].

By only considering building a team of engineers that
can satisfy all of the skill requirements of P, the manager
can allocate activities {RA, AD, IM} to a2 and {TE, DE, MA}
to as (Scheme 1, Fig. 1(c)). However, in Scheme 1, engi-
neers a2 and as might be overburdened with multiple ac-
tivities, and these activities would have to wait for a long
time to be executed. By considering alleviating the heavy
workloads of the employees, the manager can allocate the
activities {RA}, {AD}, {IM}, {TE}, {DE} and {MA]} to engi-
neers ai (i=1,...,6), respectively (Scheme 2, Fig. 1(d)). In
Scheme 2, however, the engineers might spend too much
effort on communication when conducting interdepend-
ent activities, which will also degrade the benefit of
product P. By considering improving the employees’
communication efficiency, the manager can allocate {RA}
to a1, {AD, IM} to a2, {MA} to a3 and {TE, DE} to as (Scheme
3, Fig. 1(e)). Scheme 3 is superior to Scheme 2 in that it
employs a team of well-connected engineers that can col-
laborate with the less communication cost while preserv-
ing their small workloads.

Therefore, an efficient social task allocation approach
should not only focus on finding a set of employers that
have the necessary skills and a fair allocation of the work-
loads among the employers but also address the objective
of maximizing the social effectiveness. Social effectiveness
is the indicator used to determine how effectively social
individuals can communicate. In many SNs, social con-
nection always represent a positive relationship among
individuals, such as friendship in acquaintance networks
[16], partnership in collaboration networks [5] and loca-
tion proximity in opportunistic mobile networks [17].
Therefore, in this paper, we simply use the measure social
distance to quantify the social effectiveness: socially closer
individuals yield higher social effectiveness (i.e., they can
communicate with one another more effectively) [18].

To the best of our knowledge, the first work to address
the objective of maximizing the social effectiveness when
addressing the social task allocation problem was by
Lappas et al. [2]. The work of Lappas et al. [2] was fur-
thered investigated by considering several variants with
some additional constraints [3][8-10]. Unfortunately, all of
these studies require a central authority that maintains
information on all of the users and can communicate with
them directly for task allocation in a centralized manner.
Although centralization can provide a rigorous quality
guarantee, the poor robustness and high computational
complexity make it unacceptable for large-scale SNs
[19][20]. Against this background, this paper introduces a
novel distributed task allocation model by utilizing mul-
tiagent technology [21-24]. In the proposed model, imme-
diately when a complex task arrives to the system, a mo-
bile and cooperative agent is dispatched to each subtask
of the complex task. With respect to the mobility, each
agent can transport itself to a suitable user in such a way
that the user i) can perform the subtask it carries, ii) can
communicate with other users effectively and iii) under-
takes small workloads. With respect to cooperativeness,
agents can cooperate with each other by forming teams
and moving to a suitable user jointly if cooperation can
mitigate load unfairness and increase social effectiveness.

Thus, the main contribution of this paper is to propose
a distributed social task allocation model for the first time
with the aims of both load balancing and social effective-
ness maximization. Moreover, because our cooperation
mechanism is implemented by the agents that queue at

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

the same user, it avoids causing heavy network traffic for
agents’ negotiations. We evaluate the proposed model
both theoretically and experimentally. Through theoreti-
cal analyses and experiments, we determine that the pro-
posed model 1) can converge to a stable solution in poly-
nomial time; 2) is efficient in improving the system load
balance and social effectiveness; 3) reduces the computa-
tion time significantly compared to all conventional mod-
els and 4) adapts to network dynamics quickly, making it
a desirable option for dynamic large-scale applications.
The remainder of this paper is organized as follows. In
the next section, we give the definition of the social com-
plex task allocation problem and its objective; in Section 3,
we propose the multiagent-based task allocation models
with non-cooperative and cooperative agents. In Section
4, we analyze our model’s properties, and Section 5 con-
ducts a set of experiments to evaluate our model’s effec-
tiveness, scalability and robustness. In Section 6, we pro-
vide a brief review of related work on task allocation
among social network subjects. Finally, we present our
paper’s conclusions and discuss future work in Section 7.

2 PROBLEM DESCRIPTION

2.1 Notations

We consider the social complex task allocation problem
consisting of a social network SN and a set of complex
tasks I'={CT1,CT,...,CTx}. The social network SN=<N, E> is
an undirected graph, where N={ni,n,...,nu} is the set of
nodes (hereafter, we use the terms “node”, “user” and
“individual” interchangeably) and V(n;nj)eE indicates
the existence of a connection between nodes ni and #;. The
connections among the nodes represent communication
possibilities. Let there be I types of available capabilities
of nodes C={ci,cz...,a} in a SN. Each node nieN owns
some capabilities O«ESC, which make it eligible to per-
form the subtask that requires the capability cje Oni.

A complex task is a task that can be divided into sever-
al subtasks that are dependent on one another [24]. Each
complex task CTiel then can be represented by an undi-
rected graph <TV, TE>, where TV={ti,tz,... ti} is the set of
subtasks of CT;, and V(¢ tis)eTE indicates that ti and ti
are interdependent on one another'. Each subtask tjeTV
then can be defined by a 3-tuple <R(tj),Q(ti).n(ti)>, where
R(tj)EC is the capability that the subtask f; requires (for
simplicity, we assume that each subtask requires only a
single capability, i.e., |R(tj)|=1). The interdependent sub-
task set Q(tiy)={ti|(tj, tx)eTE} represents the relevant sub-
tasks that tj must coordinate with. The node location
function n(t;): TV—N indicates the node on which t; is
allocated. A wvalid task allocation ® is defined as the
mapping of subtask VtieTV to a node nx such that nx has
the capability to perform t; (i.e., R(tj)€Onm).

2.2 Objectives

2.2.1 Load Balancing

As discussed earlier, one of the main objectives of social
complex task allocation is load balancing, i.e., assign the
subtasks among the nodes as evenly as possible such that

1 In this paper, we assume that there are no rigorous precedence orders
among the interdependent subtasks, which is reasonable in real-world
applications. For example, during the development of a software product,
although the Implementation activity occurs prior to the Testing activity,
the Implementation engineer must also wait for the Testing engineer’s
feedback for debugging and optimization.

WANG AND JIANG: MULTIAGENT-BASED ALLOCATION OF COMPLEX TASKS IN SOCIAL NETWORKS

no subtask must wait very much time to be executed.
There are many measures to quantify the load balance
extent, such as the maximum load over all of the nodes [7]
and the standard deviation of nodes’ loads [22]. However,
to reflect the advantage of our muliagent-based task allo-
cation model (presented in Section 3), we adopt an alter-
native load balance measure, which can be called the so-
cial waiting cost.

Definition 1. Social waiting cost. Given a valid allocation @
of subtask Vtje CTi (CTiel) to a node nkeN, the social waiting
cost of all of the subtasks, SWC(D), is defined as follows:

swe@)=3 L, (L, +1/2 (1)

where L.=I{tix|n(tx)=ni}! is the number of subtasks that
are allocated on node ni. For a given node n;, let the num-
ber of subtasks that are allocated on n: be Lu; then, the
first subtask must wait one unit of computation time to be
completed, the second subtask must wait two units of
computation time, and inductively, the Luth subtask must
wait Lu units of time. The total waiting cost of the sub-
tasks allocated on node i then is S Q=L (L, +1)/2"

Isi<L,,
This social waiting cost definition is motivated by [23],
which is powerful enough to quantify the load balance
extent.

Property 1: Given a social task allocation problem, the smaller
the social waiting cost of a valid allocation @, the more balance-
able the allocation @ is.

2.2.2 Social Effectiveness

In addition to aiming at a fair allocation of subtasks
among the nodes, these allocated nodes should also
communicate with one another effectively in such a way
that they can complete a complex task successfully [18].
Given any two nodes ni and nj, however, it is not easy for
a task manager to determine whether they can communi-
cate effectively if this manager does not know them well.
In many SN, the connection always represent a positive
social relationship between social individuals such as
friendship in acquaintance networks [16], partnership in
collaboration networks [5] or location proximity in oppor-
tunistic mobile networks [17]. Therefore, social distance
can be used as a good indicator of social effectiveness
[2][3][9][10]. The social distance between nodes ni and 1;,
d(ni, nj) is the sum of the connections on the shortest path
that connects the two nodes, and the shorter the distance
between them, the more effectively they can communicate
(or equivalently, the fewer the communication cost will
be incurred), and vice versa. In the following, we use a
simple but intuitive and reasonable social communication
cost measure to quantify the social effectiveness.

Definition 2. Social communication cost. Given a valid
allocation @ of subtask VtjeCTi (CTiel) to a node nxeN, the
social communication cost of all subtasks, SCC(D), is defined as
follows:

SCC(@) = ZCT,EI' zt,,scr, Zz,,sn(z,.j) d(n(tij),))/2 @)

Property 2: Given a social task allocation problem, the smaller
the social communication cost of a valid allocation @, the more
socially effective the allocation @ is.

2.3 Trade-off between Load Balancing and Social
Effectiveness

We are mainly concerned with allocating the subtasks to
nodes with the aims of both load balancing and social
effectiveness maximization, which is a bi-objective opti-
mization problem, and the two objectives are often con-
flicting. A typical way to solve the bi-objective optimiza-
tion problem is to transform the problem into a single
objective problem [12][14]. In this paper, we adopt this
idea by combining the two objective functions (i.e., social
waiting cost and social communication cost) into a single
objective function (i.e., the social execution cost).

Definition 3. Social execution cost. Given a valid allocation
D of subtask VtjeCTi (CTiel) to a node nkeN, the social exe-
cution cost of all subtasks, SEC(D), is defined as follows:
SEC(D)=aSWC(D)+BSCC(D).

The coefficients @ and p (a, p>0) determine the influ-
ences of their corresponding terms and are application
dependent. For example, in load-oriented scenarios such
as proposal evaluation, the communication cost might not
be significant compared to the waiting cost [7]. However,
in communication-oriented applications such as develop-
ing software products, engineers must spend a substantial
amount of effort on communication [2].

Finally, the social complex task allocation problem that
is studied in this paper can be defined as follows:

Definition 4. Social complex task allocation problem.
Given a social network SN=<N, E> and a finite set of complex
tasks I, the social complex task allocation problem is to deter-
mine the optimal valid allocation @ that has the minimum so-
cial execution cost, i.e.,

min SEC(®)
st.R(t,)eO,,,,Vt,€CT,CT, el

n(t;)?

Property 3. Social complex task allocation problem is NP-hard.

The hardness proof follows directly from the traditional
known NP-hard social team formation problem discussed in
[2], which is a specialization of this social complex task
allocation problem when the load balancing objective is
ignored (i.e., a=0).

Because our problem cannot be solved optimally with-
in polynomial time unless P=NP, in this paper, we pro-
pose an efficient distributed social complex task alloca-
tion model by utilizing the multiagent technology, which
also provides a provable performance guarantee. Multia-
gent technologies have been employed widely for distrib-
uted problem solving [1][12-15][19][21-31]. Motivated by
the studies [22-24], in our model, we use the mobile and
cooperative agent to carry the subtask to search for the
suitable target node.

3 THE MODEL

We formulate the multiagent-based social complex task
allocation model as follows. First, we dispatch an agent as;
for each subtask tije CT:i (A={a1,az,...,a:} denotes the collec-
tion of agents in the system). Each agent aic A then can be
defined by a 2-tuple <ST(ai), IA(a:)>, where ST(ai) indicates
the subtask that it carries, and the interdependent agent
set IA(ai)={ay,...,as} represents those agents whose subtasks
have direct dependencies with the subtask of ai i.e.,
TA(ai)={aj1 ST(aj)€Q)(ST(ai))}. Second, we model each agent

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

i\f Capability c,ﬁf\(Capability c *Capability c;* Capability ¢, t; % t;
o dok | [FkkN 4
Node n; Node n, t, % a ty

b)) ®)

Node n;

Node n,

., {0288

Node n,

(@) (b)

Fig. 2. A simple social complex task allocation instance. (a) The network. (b) The complex task. (c) The equilibrium solution S={n,,n,,nz,n,}.

(d) The optimal solution S*={n;,n;,n;,ny}.

with the mobility property. With respect to mobility, we
mean that each agent ai can transport itself to a suitable
node that owns the capability to perform ai. Given the
mobility property of the agents, if there are multiple
nodes suitable for agent a;, which node should ai choose to
queue at? To answer this question, in Section 3.1, we first
investigate the non-cooperative setting where each agent
is tempted to move to the most suitable node from its
own perspective and elaborate why the agents should be
endowed with a cooperative property. Then, in Section
3.2, we develop an efficient multiagent-based task alloca-
tion model with cooperative agents.

3.1 The Model with Non-Cooperative Agents

In the non-cooperative setting, each agent attempts to
queue at the optimal suitable node that produces the min-
imum execution cost for itself. The execution cost of an
agent consists of the waiting cost and the communication
cost. Denote by n.ithe node that agent ai queues at, and
the waiting, communication and execution costs of ai are
defined as follows:

Definition 5. Waiting cost of an agent. The agent ai’s cost
of waiting to be completed by node n., We(ai, nai), is given by
the total number of agents that queue at na, ie., Wc(aina)
={aj| ng=nai} 1.

Definition 6. Communication cost of an agent. The agent
ai’s cost of communicating with all of its interdependent agents
IA(ai) is given by Cc(a;, ””’)‘Za,gmmd("a,)

From the viewpoint of ;, this agent can be considered
successfully executed if it has waited its turn in the queue
of 1. and has communicated with its interdependent
agents [A(ai).

Definition 7. Execution cost of an agent. Assume that the
waiting and communication costs of agent ai are We(ainai) and
Cc(ai, nai), respectively. Then, the execution cost of ai is
Ec(ai,nai)y=aWc(ai, nai)+pCc(ai, nai).

The meanings of the two coefficients @ and § are simi-
lar to those described in Definition 3. This execution cost
definition has many desirable properties that satisfy the
objective of the social complex task allocation problem.

Property 4. An agent prefers to queue at a node that has a
small agent load.

This agent’s preference reduces the social waiting cost.

Property 5. An agent prefers to queue at a node at which its
interdependent agents reside.

Given this preference, in the case that all of the inter-
dependent agents of ai queue at nj, ai is more likely to
queue at nj because of the zero intra-node communication
cost, resulting in a reduced social communication cost.

Formally, in the dynamic muliagent model, each agent
ai's strategy si is the node that it selects to queue at (i.e.,
sieN). The strategy set S={sy,sz,...,sx} of all agents is called

© (d)

the strategy profile. In the non-cooperative setting, a
strategy profile is in equilibrium if and only if no agent
has any incentive to change its strategy (move from its
current node to another suitable node) unilaterally, i.e.,
Vaie A and si#si, Ec(ai, si/,5-)=Ec(ai, si,S-i), where (a;, si,S-i) is
the alternative strategy profile that is generated only
when ai changes its strategy from s to si. If agents search
for suitable nodes in a purely selfish manner, the system
can always converge to an equilibrium solution (later in
Section 3.2, we will provide a rigorous proof of the con-
vergence of a multiagent model with the cooperative
agents, which encompasses the case where the agents
are non-cooperative; thus, we omit this proof here).
However, at the equilibrium state, the social execution
cost (SEC) produced by the selfish agents is not necessari-
ly the optimal. To illustrate how bad selfish behavior is,
consider a simple social complex task allocation instance
shown in Fig. 2.

Example 1. In Fig. 2(a), there is a network that consists of
two interconnected nodes, n: and n2. Node n: holds the
capability set {ciczc3), and n2 holds the capability set
{c1,¢2,¢3,c4}. Now, assume that a complex task CT is submit-
ted to the system; this task comprises four interdependent
subtasks ti={c1}, t:={c2}, t>={cs} and t={cs} (Fig. 2(b)). The
coefficients a and B, involved in the calculation of the exe-
cution cost, are set to 3 and 5. According to the multiagent
model, four mobile agents a=<ti{azas}> a:=<t{a1,as}>,
a3=<t3,{a1,a2,04}>, and as=<ts,{a3}> are dispatched to the sub-
tasks {til 1<i<4}, respectively. Next, we consider the strate-
gy profile S={nz,nz2,nz,n2}, i.e., a1, a2, as and as all queue at
node nz2. At profile S, from each agent’s own viewpoint,
they are queuing at the optimal suitable node: Vai(i=1,2),
Ec(ai,nz,S-iy=aLn+fd(n2,niae))=4a=12<Ec(ain1,S-i)=a+2=13;
for as, Ec(as,nz,S-)=4a=12<Ec(asn1,S-)=a+3p=18, and for a,
node n: is the only suitable node that has the capability cx.
Thus, the strategy profile S is an equilibrium solution that

has %az L (L”l +1) +%ﬁzlgg4d(nul 7n[A(a’)) =10q = 30unlt SECs.

1<i<2™

However, the optimal solution of this instance is
S*={ni,ny,ny,nz} (i.e., m, a2 and as queue at node ni, and a4
queues at n2), which only produces 7a+=26 unit SECs. It
is worthwhile noting that this optimal solution 5* can be
easily achieved from strategy profile S if the agents a1, a
and as cooperate with each other by moving from node n:
tonzjointly. O

Therefore, it is very beneficial to model the agents be-
ing cooperative. The cooperation mechanism employed in
this study extends the team formation mechanism [30] by
allowing agents to cooperate with each other to form a
team and to move the same node jointly. Furthermore, to

avoid the cooperation mechanism producing large inter-
node message delivering overhead, we constrain each

WANG AND JIANG: MULTIAGENT-BASED ALLOCATION OF COMPLEX TASKS IN SOCIAL NETWORKS

agent ai in such a way that it can cooperate only with its
intra-node agents (i.e., the agents that queue at the same
node with a/’s). The network traffic overhead produced by
the intra-node negotiation is so small that it can be ne-
glected [24].

3.2 The Model with Cooperative Agents

The main idea of the cooperation mechanism implement-
ed by the agents can be briefly described as follows: each
agent negotiates with its intra-node agents and decides to
cooperate with them by forming a team if cooperation
results in a reduced execution cost for the team. The exe-
cution cost of an agent team is defined as follows:

Definition 8. Execution cost of a team. Denote by nc the
suitable node that an agent team G queues at?; then, the team
G’s execution cost Ec(G, nc) is the following:

EcGng)=a), . (L, ~ls+i)+ ﬁzaﬁcza}émmd(%,ng}) 3)

The first term represents the total waiting cost of the
team G, where Luc=|{ajlns=nc}| is the number of agents
that queue at node n¢, and Ie=1{ajlaje G} | is the number of
agents in G. For a given node n¢ with the agent load L.,
the first agent in G must wait Lc-Ic+1 unit cost, the second
agent in G must wait Luc-Ict2 unit cost, and inductively,
the Icth agent in G requires Lic units of waiting cost. The
total waiting cost of the team G queuing at ng, then, is
Zlg;glG (L, ~ly+i) - The second term represents the total

communication cost of G. It is worthwhile noting that
when there is only one agent a: in G, the execution cost
of ai can be recovered in accordance with that defined in
Definition 7.

Next, we will illustrate how the team can be formed
and the advantage of the team formation protocol. Recall
Example 1, at the equilibrium strategy profile S={nzn.,
nz,n2}; from its own viewpoint, agent a: realizes that it is
queuing at the optimal node (i.e., node n2). However, ac-
cording to the team execution cost definition, a: finds that
forming team G=a1U{az,as} with a2, a3 and moving to node
ni1 jointly produces the less team execution cost: before
moving, the team execution cost of G

EC(G’ nz) = azz':l.z.s (L”u _IG + i) +ﬂza, &G Za, elA(a;) d(nG’ nﬂ,) =9a=27

, after the team G moves to ni, the execution cost of G be-
comes Ec(G,n1)=6a+p=23<27=Ec(G,nz). Then, a: will negoti-
ate with a2 and a3 for team formation, and because of the
cooperative property, agents a2 and as are willing to join

this team, whereby the team is formed.

An agent team (which also encompasses the case in
which there is only one agent in the team, i.e., the non-
cooperative case) prefers to change strategies (i.e., move
from its current node to another suitable node) if the
strategy changing can reduce the execution cost of the
team that it forms. Here, we use the measure of benefit to
quantify how much an agent team gains by changing its
strategy. The benefit that a team G gains by moving from
the suitable node 7. to another suitable node ny is

2 A node nc is suitable for an agent team G if and only if it has the ca-
pabilities required by all of the agents in G, i.e., VaieG, R(ST(ai)) € Onc.

(ay

()
@

Fig. 3. (a) The dependency relationships of the agents that queue
at node n,. (b) The negotiation process of agent 4,.

B(G,n,,n,)=Ec(G,n,)~Ec(G,n,) 4)

Given this benefit definition, it can be observed that
there is no incentive for an agent team G to form a new
team G*=GU({aj} by merging the agent 4; that has no de-
pendencies with the agents in G (ie., ai¢ U, IA(ai)) be-

cause forming such a new team G* would not decrease
any communication cost of the original team G but only
increases the waiting cost of G.

Property 6. For any agent aic A, it is only beneficial for ai to
form a team with its interdependent agents and interdependent
agents’ interdependent agents, if necessary.

Therefore, each agent a/'s cooperation domain 1(ai) can
be further limited within its intra-node interdependent
agents and interdependent agents’ interdependent agents,
if necessary, which can be denoted by
Y(ai)={aj| no=nainST(a)).CT=ST(a;).CT} (ST(a;).CT means the
complex task that subtask ST(a:) belongs to). Neverthe-
less, for each agent, even finding the optimal team that
yields the largest benefit within its cooperation domain
agents is not easy. Assume that agent a: is queuing at a
certain node; identifying the optimal team from its coop-
eration domain 1(a)) must consider the exponential num-
ber O(2'¥@") of possible combinations. To deal with this
computationally costly optimization problem, we propose
an efficient Breadth-First negotiation mechanism, where
each agent forms a beneficial team by negotiating from: its
intra-node direct interdependent agents to far-away in-
terdependent agents’ interdependent agents gradually.
To illustrate the negotiation protocol, consider Example 1
again (see Fig. 3).

Example 1 (continue). Suppose that the four interde-
pendent agents {ail 1<i<4} are now queuing at node n: (the
dependencies of these agents are shown in Fig. 3(a)).
Without loss of generality, assume that agent a1 wants to
change strategy. The negotiation process employed by a:
to form a beneficial team then can be described as in Fig.
3(b): first, a1 negotiates with its direct interdependent
agents a2 and a3, i.e., the agents in gradation 1. If a1 finds
that it is beneficial to form a team with 42 by moving to a
certain node (e.g., n1) jointly, a1 will negotiate with a: to
join this team and proceeds to negotiate with the other
agents in gradation 1 (i.e., as). Otherwise, if the formation
of a team with agent a2 does not yield any benefit, then a2
will be removed from the current team. After a: has nego-
tiated with all of the agents in gradation 1 and finds that
forming a team with a2 and as (denote a2 and a3 as the new
joining agents) is beneficial, a1 then proceeds to negotiate
the new joining agents’ interdependent agent a: (i.e., the
agent in gradation 2) to search for a potentially more
promising team with a larger benefit. The negotiation
process implemented by a: proceeds until all of the agents
that are in the cooperation domain have been visited. It
should also be noted that for each agent a;, computing the

Algorithm 1. Multiagent-Based Social Complex Task Al-
location Model

1. Repeat the following procedure until no agent team
can benefit by changing its strategy.

. Pick an agent aic A randomly.

. Initialize the flag fj of agent aj queuing at n.ito 0.

. Initialize G=, max=0 and target=Null.

. Create Queue(Q).

. Insert Queue(Q, ai), and set fi=1.

While (Q#J) do

Set ax=0Out Queue(Q) and tag=false.

For VnjeN do

0. If B(GU{ax},nai, nj)>max &&

Vaye GU{ax}, R(ST(ay))€ Oyj then

11. tag=true, max=B(GU{ax},nai, nj), target=n;.

12 End if

13.| End for

14.| If tag==true, then

15. G=GU{ax}.

2O ®NS U R WN

16. For VayeIA(ax)&& na==na && f#1, do
17. Insert Queue(Q, ay) and set f,=1.
18.[End if

19. End while
20. If G#J, move G to the target node target.

most beneficial team within its cooperation domain
agents Y(ai) by the Breadth-First negotiation mechanism
takes only O(ly(ai)|) operations. O

We now give a formal description of the multiagent-
based social complex task allocation model (see Algo-
rithm 1). In Algorithm 1, for each randomly chosen agent
ai, it first initializes its state before strategy changing
(steps 2~4). The set G stores the agent team that a: would
like to move jointly, the variable target indicates the desti-
nation node that G prefers to move to, and the value max
records the current maximal benefit that the team G gains
by changing strategy. Agent a: then utilizes the Breadth-
First negotiation mechanism to form the most beneficial
team with the agents in its cooperation domain (steps
5~19). If moving together with an agent a to the suitable
node n; produces less execution cost for the current team
GU(a:}, agent ai will negotiate with ax to join the team G
(steps 10-12). Finally, if ai realizes that it is beneficial to
move from the current node to the destination node target
by the team G (i.e,, G#J), team G will change its strategy
by moving to the node target (step 20). The system termi-
nates if no agent or agent team has any incentive to
change strategy (step 1), and the final stable solution can
be called an equilibrium solution.

4 ANALYSES OF THE MODEL

4.1 Convergence Analysis

In addition to evaluating the performance of the dynamic
multiagent model on social execution cost, its conver-
gence should also be judged. Motivated by the potential
function concept that is often used to identify potential
games [32], we have the following result.

Theorem 1. In Algorithm 1, each time that an agent team G
moves from the current node to a preferable suitable node that
achieves the benefit B, the social execution cost will reduce the
value of B correspondingly.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

Proof. Denote by S5={s1,s2,...,51} the agents’ strategy profile
and SEC(S)=aSWC(S)/2+BSCC(S)/2 the social execution
cost function on S, where SWC(S):Z L (L +1), Luiis

eN

the agent load on node ni and SCO)=Y. _ d(s.s)- Now,

consider an agent team G that changes its strategy by
moving from node sc to node s¢’. From the perspective of
the first term SWC(S) of SEC(S), we have
SWC(sg,S)= SWC(sy,S)

! Ln (Ln + 1)]

= [LSG (L.&‘U + 1) + Ls‘ (Lr + 1) + Z n;i#8G S,
-, —l)(L, +1=1g)+ (L, +1) (L, +1+15)

+ Z noESG Sy Lnj (Lnj + 1)]

=2l,(L, ~L. ~1,)

where [c is the number of agents in G, and Ls, Lsc are the

agent load on s¢ and sc'at the strategy profile S.
On the second term SCC(S) of SEC(S), we have:
SCC(s4.5.5)~SCC(s,,,5.,)

= [2Za,eG Za,elA(a,) d(SG ’ S./') + Za,eA\G Zak cld(a;)\G d(s./ »Sk)]
N [ZzaieG Za,eIA(ai)d(st »S;)+ Za,sm\c Zah eld(a)\G d(s./' >Si)]
= ZZaiEG Za,s]A(di)(d(SG ’ Sj) N d(S'G ’ Sj))

On the other hand, from the perspective of the team
G, we have
Ec(G,s;,S ;) —Ec(G,s5,S)

= [aZISiSI(,- (LSG - ZG + i) + 'Bzu,sc Zulem(u,) d(SG ’ Sf)]
- [a21s:'g/6 (Ls;; + lG - lG + i) + 'Bza,ec Za,eIA(a,)d(S‘G >S5)]
=aly(L, L, ~I)* B, o X, (5005 = d(55.5))

Until this point, we can conclude that for every sc, sc' eN:
SEC(sc,5-6)-SEC(s'c,S-c)=Ec(G,s:,5-6)-Ec(G,s'c,5-c)

Therefore, we have Theorem 1. O

Based on Theorem 1, next we will show the convergence
of the muliagent model and how fast it will converge to an
equilibrium solution.

Theorem 2. Given a complex task allocation problem in social
a network, where the number of network nodes is m; the diame-
ter of the network is d; the number of subtasks is n; each subtask
has k interdependent subtasks on average and the influence
coefficients o and B are integers. Algorithm 1 takes at most
O(an?+pnkd) steps to reach a stable equilibrium solution.

Proof. Recall the social execution cost definition that is
defined in Definition 3: SEC(-)=aSWC(-)+fSCC(-). Note
that at the initial state (i.e., the system agents are distrib-
uted on nodes randomly), we have SWC(-)<n(n+1)/2 (the
worst case with the maximum SWC value is that all of the
agents queue at the same node and SCC(-)<nkd/2 (the
worst case with the maximum SCC value is that each pair
of interdependent agents takes d hop distances to com-
municate. Note also that at the optimal state,
SEC(-)zan(n/m+1)/2 (the optimal case with the minimum
SEC value is that agents are distributed on nodes evenly
and interdependent agents queue at the same node with-

WANG AND JIANG: MULTIAGENT-BASED ALLOCATION OF COMPLEX TASKS IN SOCIAL NETWORKS

out any communication cost). From Theorem 1, we know
that each time a team changes its strategy, SEC(-) reduces
at least one unit value because a and f§ are integers. Thus,
we can determine that SEC(-) will reach its minimum in at
most O(a(n>+n)+pnkd-a(n?/m+n))= O(an*+fnkd) time steps.
O

4.2 Performance Guarantee Analysis

Although the dynamic multiagent model can always con-
verge to an equilibrium solution in polynomial time steps,
its equilibrium solution is not necessarily the optimal so-
lution that has the minimum social execution cost, even
the agents are cooperative. Therefore, it is interesting and
very much needed to analyze the multiagent model’s
degradation on system performance. The price of anarchy
(PoA) measure (which is often used in game theory [33])
provides a good indicator to quantify the gap between the
worst equilibrium solution and the optimal solution. In
this paper, we use this notion to evaluate the multiagent
model’s performance. Let ES be the set of equilibrium
solutions of the multiagent model; then, the price of anar-
chy of this model, PoA, can be defined by the worst case
ratio among all of the equilibrium solutions over the op-
timal solution (Opt) in terms of the social execution cost,
ie,

_ SEC(S) 5
Pod = max AEC(Opt) ©)

Next, we will provide an upper bound of PoA of the
multiagent model with the non-cooperative agents. As we
discussed above, the cooperative setting might have a
better solution than the non-cooperative setting, which
will lead to a lower PoA. Thus, the multiagent model is
likely to have a tight lower bound.

Theorem 3. Given a complex task allocation problem in a so-
cial network, where the number of network nodes is m; the di-
ameter of the network is d; the number of subtasks is n; each
subtask has k interdependent subtasks on average. The PoA of
the multiagent model then is O(1+3m(a+2kdp)/a(m+n)).

Proof. Let S={si,sz,...,5:} and P={py,ps,...,ps} be the equilib-
rium solution and the optimal solution, respectively. At
strategy profile S, the execution cost of the agent ai is

Ec(s,,S_)=aL (S)+ ﬂza/gmwd(si, 5;) 7 where Ls(S) is the

agent load on node s: at strategy profile S. The sum exe-
cution cost of all of the agents at S is:

Sum(S)=Y " _ Ec(s,,S.,)
= aZn‘ eN Li‘ (S) + ﬂZa‘ ed th/ elA(a;) d(S,. ’ S/) = 2SEC(S) —ha

As is known, at the equilibrium solution S, the execution
cost of agent ai should not decrease when ai changes its
strategy from si to Pi, ie.,

Ee(a,.5,.5.) < Ec(a, p.S.) =a(L, () +D+ Y. . d(p,s)
<L, (D +BY, @) +d(sp) (6)

The inequality (6) follows from the triangle inequality for
the social distance, i.e., VninjnkeN, d(ni,n)<d(ni,ne)+d(nx,).
If we sum the execution cost of all agents, we then have
the bound of the social execution cost of the equilibrium
solution S, as follows:

Sum(S)=Y" _ Ec(a,s.S)<Y. _ Ec(a,p,S.,)
= azm, eN L", (P)(L", (S) + 1) + ﬁ (Za ed ZE,elA(a,) d(si »S;) + 2nkd)

= aZn’ENL,,, (P)yL, (S)+ ﬂz% y Z[,, ety (5,25, + e+ 2mkd 3

< azmgN% (L, (P)+L, (S) + ,BZHI ., Zﬂ/ oy (5,25,) + nac+ 2nkd g)

The inequality (7) follows from the fact Vvx, yeR,
x2+y2>2xy. Derive from (7), we can conclude that

1
Sun($) < L@, LT, [T, 40555,
1 a
+ Eﬁza,m Za,em(a,)d(si’ S/) + Ezn,ew Lil (P)+na +2nkd

= %Sum(S) + % > L (P)tna+3nkdf

= Sum(S)<a), _ L (P)+2na+6nkd B

neN
By replacing Sum(S) with 2SEC(S)-na, we can derive
2SEC(S)-na<ay. _ L (P)+2na+6nkdf

neN

= SEC(S)<ad. I (P) +%na +3nkd B

3
2
SEC(S) _ oy, L (P)+ nac+3nkd f

SEC(P) "~ ay L (P)
SEC(S) _, , 3m(a+2kdfp) ®
SEC(P) a(m+n)
The inequality (8) follows from
SEC(PY2ay,, L} (P)= %ﬂ:’”) ©)

The inequality (9) has been proven in Theorem 2. There-
fore, we have proven Theorem 3. [

5 EXPERIMENTAL VALIDATION AND ANALYSES

5.1 Effectiveness

We test the effectiveness of the mulitagent-based social
complex task allocation model in small-scale settings. In
these settings, each network consists of 30 nodes inter-
connected by a small-world structure in which the rewir-
ing probability is p=0.2 [34]. The number of capabilities
owned by each node nieN is given by U(1,4) (U(a, b) re-
turns a value that is distributed at the interval [a, b] uni-
formly), and each owned capability ¢je O is chosen from
the range [1, 16] randomly. There is only one complex
task ct to be executed, and its subtask size is set to 4, 8, 12
or 16. Each subtask tiect is randomly assigned a single
required capability R(t)€[1,16]. The underlying interde-
pendent relationships of these subtasks are randomly
generated: each subtask has a dependency with another
subtask with a probability of p=0.4. Moreover, we select
five cases that have various coefficient values (i.e., @ and
pB) for the calculation of the social execution cost, i.e., case
[:(a, B)=(1,5), case 1I: (o, B)=(1,2) case III: (@, B)=(1,1) case
IV: (a, B)=(2,1) and case V: (a, B)=(5,1).

We conduct the multiagent model as follows: we first
allocate each subtask to the suitable node randomly and
denote this solution as the initial solution. Then, we uti-
lize our model to reallocate the subtasks by allowing the
agents (who carry the subtasks) to change their node loca-
tion. We compare our model (Our model) with the fol-
lowing four conventional task allocation models:

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

8
100 40 :
et Ml Crimal 0 B Cptimal
Q .t &
L IReplace 0 0 IReplace
s B Our model 1257, I Our model
§xf EOGreedy 1Em = Greedy
et :]:u 180
Fnf =120
0

(a) #Subtask=4
Fig. 4. The performance of various task allocation models on different (o, #) values and different complex task sizes.

(b) #Subtask=8

® Centralized optimal model (Optimal), which utilizes
an exponential brute-force search method to consider
all of the possible allocations of subtasks to nodes.

® Centralized iterative replace model (IReplace) [2]
where a central controller first allocates each subtask to
the most suitable node with the minimum task load
and then replaces the allocated node of each subtask it-
eratively to reduce the social execution cost.

® Centralized greedy model (Greedy) [8], where the
central controller identifies the best node for each
complex task and allocates this complex task to that
node. The best node means that it can allocate unsatis-
fied subtasks to its contextual nodes with the mini-
mum social execution cost.

® Distributed agent-based probability model (Probabil-
ity) [23], where each agent carries a task wanders from
its current node to another node probabilistically. If an
agent encounters a node that produces a smaller execu-
tion cost than the system's average value, it queues at
that node; otherwise, it continues wandering.

Fig. 4 shows the final social execution costs (SEC) pro-
duced by these models, which are achieved by averaging
over 20 instances. From the experimental results, we con-
clude the following;:

1) In all cases, our model performs very close to the
Optimal and IReplace models on SEC, which is better
than the Greedy and Probability models. This level of
performance occurs because each agent team in our mod-
el strives to search for the optimal suitable node to queue
at, which is beneficial to reduce the system’s social execu-
tion cost.

2) In the latter two cases (i.e., cases [V and V, where
the influence of the waiting cost is larger than that of the
communication cost), our model produces the less social
execution cost compared to the first two cases (i.e., cases

[and II). The potential reason is that when waiting cost
can overlap the communication cost, our model will take
advantage of reducing the waiting cost over its generated
inter-node communication cost. While in the first two
cases (where the influence of the communication cost is
larger than that of the waiting cost), the system expends
much effort for communication, which implies that inter-
dependent agents are more likely to queue at the same
node because of the zero intra-node communication cost.
As defined in Definition 3, SEC linearly depends on
agents’ communication costs, while SEC is proportion to
the square of each node’s agent load (i.e., SEC(-)~O(Lx?).
Thus, the larger the communication cost coefficients are,
the larger the value of SEC that will be incurred.

5.2 Scalability

We test the scalability of our model in large-scale settings,
where each network comprises 2000 nodes. In this exper-
iment, four typical network models (i.e., Small-World,
Scale-Free, Scale-Free with Triad Formation and Random

I Orptimal
IReplace

(c) #Subtask=12 (d) #Subtask=16

network) are used to imitate the underlying topology of
these nodes. Before discussing the results of the task allo-
cation models on these networks, we first briefly describe
how these networks are constructed.
® Small-World Network. This network starts from a regu-
lar ring lattice in which each node connects with 6
nearest neighbors, and this node has a probability of
p=0.2 of rewiring each connection to another node [34].
® Scale-Free Network. The scale-free network starts with
mo nodes connected by mo-1 connections. At each step,
we add a new node and connect this new node to m:
nodes that already existing in the network. The proba-
bility that a new node v connects an existing vertex u is
proportional to the degree of u [35].
® Scale-Free Network with Triad Formation (Scale-Free with
TF). This network is built based on the scale-free net-
work by adding an additional triad formation step: if a
connection is added between nodes v and u, then an-
other connection is added from v to a randomly select-
ed neighbor of u [36]. This additional triad formation
step constructs a network with power-law degree dis-
tribution and a high clustering coefficient.
® Random Network. By referring to [37], the random net-
work is generated by randomly adding connections be-
tween agents with a probability of p=0.003, which re-
sults in the network average degree being equal to 6.
We assume that there are hundreds of complex tasks,
whose numbers range from 100 to 1000, submitted to the
system. The number of subtasks of each complex task is
given by U(4, 16). Due to space limitations, here we con-
sider only the coefficient case (a, f)=(1,1) (we also evalu-
ate the system performance on other coefficient cases
with different (o) values, and we obtain similar observa-
tions; thus, we omit the discussion of these cases). The
other settings are similar to those described in Section 5.1.
Because Optimal is intractable in the large-scale set-
tings, in this experiment, we compare only our model
with the other three models, i.e., Greedy, IReplace and
Probability. Fig. 5 shows the results of the SECs of these
models, from which we can conclude that: 1) In all of the
experiments, our model performs slightly worse than
Greedy but is much better than Probability and IReplace
on SEC, which is especially notable when compared to
the Probability. 2) In contrast to what we have observed
in Section 5.1 that IReplace performs better than Greedy
in small-scale applications, in large-scale applications,
IReplace performs worse than Greedy. The potential rea-
son is that, in the large-scale applications, there are thou-
sands of subtasks, and at each iterative round, IReplace
considers only the current chosen subtask, ignoring the
status of its direct (or indirect) relevant subtasks (the
numbers of these subtasks are considerable in the large-
scale applications), while Greedy can alleviate this prob-
lem in these scenarios.

WANG AND JIANG: MULTIAGENT-BASED ALLOCATION OF COMPLEX TASKS IN SOCIAL NETWORKS

&

--E-- Greedy

g sl e
L 2}

‘E’ ;; —e— Our model *_.f‘. ‘é 2f —e—Ourmodel

8l -0 IReplace ™ 1 84l -4~ IReplace

3 wf =% Probabilty .- | 3@ mf =w— Probability

@ .t - | @

X x

W w

] | ®

[¥] 19

o Q

w W _
100 200 300 400 500 600 TO0 8O0 900 1000 1000

Number of Complex Tasks

Number of Complex Tasks

(a) Small-World (b) Scale-Free

oy

Flg 5 The social execution costs of different models in the large-scale appllcatlons

Social Execution Cost

=== Greedy

A

f === Greedy [
[—o— Our model O #=r —g—Qur model
::t =l |REp|3[)IPT g j: =i IReplar.:g g("‘
rt —#— Probability .4 © w} —%— Probability e
‘5[e 8
i e W
‘a[s o = g 5
4 . Q
o8 »

EWZWW!WSWEW?WBWEW‘M
Number of Complex Tasks
(d) Random

W0 &0 W B0 W0 0w
Number of Complex Tasks
(c) Scale-Free with TC

3

‘- ; “effe Gree'ﬂ)r L
12} —@=QOur model e —o— Our model iy
10} =4~ IReplace - --4-- |Replace g

[=%— Probability .»":' —%— Probability P

Running Time (s)
Running Time (s)

00 200 200 400 500

600 TOO 800 800 1000
Number of Complex Tasks
(a) Small-World

00 200 300 400 S0 600 TODO B00 900 1000
Number of Complex Tasks

(b) Scale-Free

Running Time (s}

15

Greedy

A 4
‘_ —O—Ourmodel ,.-;" 12 —8— Qur model)g"
1wl -~ IReplace Il 1wl =4~ IReplace v
5| == Probabilty P 5| —%— Probability ol

Running Time (s)

5
5
it
2

[PR -]

C;CC- 2D¢ W0 400'-530 600 T M0 00 1000 W0 200 300 400 500 600 TOO 00§00 1000
Number of Complex Tasks Number of Complex Tasks
(c) Scale-Free with TC (d) Random

Fig. 6. The running times of different models in the large-scale applications.

Fig. 6 shows the running times of these models, from
which we can observe that: 1) compared to our model, the
traditional Greedy, IReplace and Probability models
spend much more time on task allocation. For example, in
the case that #complex task=1000 in a small-world struc-
ture (i.e., Fig. 6(a)), Greedy must spend one hour and a
half (approximately 5x10%s)) to return the allocation re-
sult, while our model requires only several minutes. We
explain this phenomenon by analyzing these models’ the-
oretical computational complexity. Given a social task
allocation problem that has m nodes, n complex tasks and
each complex task consists of k subtasks on average, the
computation complexity of Greedy and IReplace is
O(nk?m?) (The details of the complexity description of the
IReplace and Greedy models can be found in [2][8]). As
discussed in Section 5.1, our model takes at most O(k?n?)
time steps to converge to a stable equilibrium, and at each
time step, an agent needs to take only O(k) operations to
compute the most beneficial team. Thus, the time com-
plexity ratio between Greedy (or IReplace) and our model
then equals to O(nk?m?)/O(k*n?)=m?/(kn), which is con-
sistent with the experimental results to some extent.

Table I shows the properties (e.g., network diameter,
characteristic path length (CPL) and clustering coefficient)

Table 1
The properties of networks
Property | Diameter Characteristic | Clustering
L Path length coefficient
Network CPL c

Small-World 9.42 5.68 0.32
Scale-Free 6.04 3.84 0.01
Scale-Free with TC 5.04 3.22 0.24
Random 7.8 4.49 0.03

o o ; ;

gz [|small-World

g wf [l Scale-Free

S °t 777 Scale-Free with TF

=]

¢

w %

E ;

3 :

=] :

(73]

00

800

1200

Number of Complex Tasks
Fig. 7. The effect of the network properties on social execution cost.

of these networks used in this experiment. Fig. 7 shows
the SEC produced by our model in these networks. From
the results shown in Fig. 7, it can be found that our model
is more relevant to network diameter and CPL: if the net-
work has a shorter diameter and a smaller CPL, our mod-
el will produce the less SEC. For example, our model
produces the least SEC in the Scale-Free with TF network
that has the shortest diameter and smallest CPL compared
to other networks (i.e., Small-World, Scale-Free and Ran-
dom). On the other hand, the clustering coefficient feature
does not show direct correlation with the performance of
our model. For example, although Small-World has the
higher clustering coefficient than that in the scale-free
with TC, our model produces the less SEC in Scale-Free
with TC than the SEC in Small-world.

To summarize, our model is a desirable option for the
large-scale applications where quality performance and
real-time response are highly required.

5.3 Robustness

Social networks are inherently open and dynamic with
user turnover and connection changes [38][41]. An effi-
cient social task allocation model should also be robust to
be capable of addressing the network dynamics. We test
the robustness of our model on the networks’ topology
dynamics: initially, we utilize our model to allocate two
complex tasks (each consists of 16 subtasks) on a small-
world network (which is composed of 30 nodes that are
interconnected by a small-world structure). During the
task allocation process, four disturbance events occur se-
quentially, which are described as follows:

® Event 1 (Connection Break): Because of the interest
conflict, a set of connected individuals break their con-
nections (here we set each pair of pairwise connected
nodes with the probability p=0.2 of breaking their con-
nection).

Event 2 (Connection Enhance): Because of the occa-
sional cooperation experience, some strange individu-
als become friends (here, we set each pair of pairwise
unconnected nodes with the probability p=0.2 of being
interconnected).

Event 3 (Individuals Entrance): Because of the recom-
mendation of the existing users, some new individuals
register and enter into this network (here, we assume
that there are 5 new nodes that arrive to the system).

10

560

560 3
540 \ - Event 2 1540
o o ‘_—/ ooy
@ 500 \'] 500
8 480 J 480
= 460 = J 480
S 440 J 440
< 420 Event 3 % ey
o 400 f J 400
€ 3807 Event 1 H J a8
380 | - J 60
w
— 3404 % 4 340
8 320 \ " 4 320
8 300 3 300
o 280 N\e——+FEvent4 J280
260 o 1 1 1 1 1 1 I 1 1 - 260
0 40 80 120 160 200 240 280 320 360 400
Time(ms)

Fig. 8. The social execution cost plot with four disturbance events.

® Event 4 (Individuals Exit): Because it is time consum-
ing to sustain the memberships with their connections,
some individuals can log out and leave this network

(here, we assume that there are 5 nodes that exit the

system).

The first two events change the connections of the
network, and they are designed to test our model’s ability
to adjust the social communication cost. The remaining
two events change the number of nodes, and they are
designed to test our model’s ability to adjust the social
waiting cost. The resulting social execution cost plot with
the above four disturbance events is shown in Fig. 8, from
which we observe that once the disturbance occurs, the
SEC changes immediately. However, our model can
adapt to the disturbance within several seconds and can
converge quickly to another stable desirable solution. It
should also be noted that in Fig. 8, as our model proceeds,
the SEC decreases as well, making our model an anytime
model: the task allocation process can be terminated at
any time, where it can provide the system with a solution
that is better than any of the preceding states. Moreover,
our model can always converge to stable equilibrium in
finite time steps.

6 RELATED WORK

In this section, we first review the traditional task alloca-
tion researches in social networks and then provide a
brief discussion of the multiagent-based task allocation
technology that has been applied to other networked sys-
tems.

6.1 Task Allocation in Social Networks.

Given a task T and social network SN consisting of vari-
ous individuals, one of the main objectives of social task
allocation is to allocate T to a set of professional individu-
als IESN in such a way that I can collaborate effectively
[2][3][8-10]. Lappas et al. [2] refer to social task allocation
as social team formation and attempt to build an efficient
team such that the team not only satisfies the capability
requirements of a task but also has the smallest team cost.
The work of Lappas et al. [2] was further investigated by
several team formation variants with additional goals and
constraints [3][8-10]. For example, Kargar and An [8] as-
sume the existence of a team leader, and the team cost is
measured by the summed distance between the team
leader and the team members. Datta et al. [3] and Anag-
nostopoulos et al. [9] believe that team formation in social
networks should not only optimize the social effective-
ness but also address the load balancing (i.e., the work-
loads allocated to each expert should be proportional to
his capacity). Rangapuram et al. [10] investigate a more
realistic social team formation problem by introducing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

more generalized constraints, such as i) including a pre-
determined team leader; ii) the team members should be
socially close and iii) the bounded team budget. Note that
all of these problems are NP-hard and the previous re-
searchers mainly focus on developing centralized approx-
imations that have a high performance guarantee. How-
ever, the low robustness and high computational com-
plexity prevent the centralization from scaling well to
large-scale systems in which there are millions of social
individuals to consider and thousands of tasks to be exe-
cuted [19][20].

6.2 Task Allocation in Networked Multiagent
Systems

In this type of study, each individual is modeled as a self-
ish agent whose aim is to maximize its own profit. Mar-
ket-based mechanisms can be well exploited by the agents
to perform tasks [13][19][26]27]. For example, in an agent
network, to optimize an agent’s own benefit, the agent
can make a contract with its neighbors about which task
to undertake [13][19]. When the agents have incomplete
information on other agents’ resource prices, they can
utilize a bilateral bargaining protocol to negotiate with
others round-by-round until they have made an agree-
ment on the resource price [26][27]. On the other hand,
the network structure itself can affect system performance
on task completion [25][28][29]. Gaston and des]ardins
[28] and Kota et al. [25] thus develop a structural adapta-
tion method to increase social welfare, where agents can
adjust the network structure by deleting their costly con-
nections and rewiring them to those agents that have bet-
ter connections.

Besides system monetary revenue, the task resource
access time in the networked system is also a crucial fac-
tor of the system performance [6][12][14][15]. To reduce
the system resource access time, Jiang and Jiang [6] pre-
sent a contextual resource negotiation mechanism by al-
lowing agents to negotiate with others from nearby to
faraway gradually. To achieve dependable resources with
the least resource access time for undependable social
networks, Jiang et al. [12] propose a reputation-based ne-
gotiation mechanism. Recently, a network-layer oriented
task allocation model is presented for minimizing the task
execution time in multiplex networks [14]. By being
aware of the community structure in networks, Wang and
Jiang [15] propose a community-aware task allocation
model (where agents can cooperate with other agents in
the same community) to improve social welfare while
incurring a few of negotiation overhead. In the distribut-
ed network computing systems (e.g., grids), the nodes
(e.g., computers, machines or workstations) have to take
time to execute the tasks, and thus, the primary goal in
this kind of system is to maximize throughput. To com-
plete the tasks as soon as possible, Liu et al. [23] propose
an agent-based probability load balancing method to dis-
tribute the tasks on nodes evenly.

All of these above research approaches are efficient for
the independent task allocation problems in which there
are no dependencies among the tasks. While this paper
focuses on addressing the interdependent task allocation
in social networks, where the success of a task also de-
pends on how effectively the involved individuals com-
municate. In reality, in case two experts have negative
relationships, they are unlikely to complete the interde-
pendent tasks successfully even if they are professional in
these activities [18].

WANG AND JIANG: MULTIAGENT-BASED ALLOCATION OF COMPLEX TASKS IN SOCIAL NETWORKS

More broadly, this social task allocation problem can
also be viewed as a specific variant of the constraint satis-
faction problem (CSP), and hence, some related distribut-
ed CSP optimizations such as ADOPT [39] and coopera-
tive mediation-based systems [40]. However, because of
the multi-stage inter-node negotiations, these methods
will produce prohibitive network traffic overhead, which
is unacceptable for practical online applications [24].
Compared to these studies, we restrict agents to cooper-
ate only with their intra-node agents that queue at the
same node.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we address the complex task allocation in
social networks, where a set of individuals should work
together to satisfy a complex task’s skill requirements.
Moreover, this social task allocation should not only meet
the traditional objective of load balancing, but also the
new objective of maximizing social effectiveness. To meet
both of the two objectives, we propose a distributed mul-
tiagent-based task allocation model by dispatching a mo-
bile and cooperative agent to each subtask to search for
the suitable individual that has the necessary skills, small
workloads and lower coordination costs with others. Our
experimental results show that our model produces as
less task execution cost as the benchmark centralized
models but reduces the computation time significantly
compared to the traditional models. Moreover, our model
adapts to network dynamics quickly, making it scale well
in dynamic large-scale applications.

There are two interesting issues that can be investigat-
ed further. In this study, each agent (or agent team)
searches in all the network nodes and chooses the one
with the lowest execution cost as the target node. This
global view of the environment might be unpractical in
some real-world applications. In the future, we would
like to devise more efficient cooperation mechanisms
(e.g., agents exchange their node location) to improve the
performance of the system with local view constraint.
Another limitation of this study is that the tradeoff coeffi-
cients between the waiting cost and communication cost
are set to be fixed. In reality, due to system dynamics
such as frequent users and tasks turnover, fixed coeffi-
cients cannot always optimize system performance (even
might have a negative impact). Therefore, in the future,
we would like to devise automatic adaption mechanism
to dynamically adjust the coefficients to the change of
environments rather than set them to fixed values.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (No0.61170164, and No. 61472079),
the Funds for Distinguished Young Scholars of the Natu-
ral Science Foundation of Jiangsu Province
(No.BK2012020), and the Program for Distinguished Tal-
ents of Six Domains in Jiangsu Province (N0.2011-DZ023).

REFERENCES

[1] Yichuan Jiang and J.C. Jiang, “Understanding Social Networks from a
Multiagent Perspective,” IEEE Transactions on Parallel and Distributed
Systems, 25(10):2743-2759, 2014.

[2] Theodoros Lappas, Kun Liu and Evimaria Terzi, “Finding a
Team of Experts in Social Networks,” Proceedings of the 15th
ACM SIGKDD international conference on knowledge discovery and

[l

4]

5]

(6]

(7]

(8]

Bl

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

data mining(KDD'09), pp.467-475, Paris, France, June 28-July 01,
2009.

Samik Datta, Anirban Majumder and KVM Naidu, “Capacitat-
ed Team Formation Problem on Social Networks,” Proceedings
of the 18th ACM SIGKDD international conference on knowledge
discovery and data mining (KDD’12), pp.1005-1013, Beijing, Chi-
na, August 12-16, 2012.

Long Tran-Thanh, Sebas Stein, Alex Rogers and Nicholas R. Jennings,
“Efficient Crowdsourcing of Unknown Experts Using Multi-Armed
Bandits,” Proceedings of the 20th European Conference on Artificial Intelli-
gence (ECAI'12), pp.768-773, Montpellier, France, August 27 -31, 2012.
Liat Sless, Noam Hazon and Sarit Kraus, "Forming Teams and Facilitat-
ing Relationships for Completing Tasks in Social Networks," Proceedings
of the 13th International Conference on Autonomous Agents and Multingent
Systems (AAMAS'2014), pp.261-268, Paris, France, May 5-9, 2014.
Yichuan Jiang and Jiuchuan Jiang, “Contextual Resource Negotiation-
Based Task Allocation and Load Balancing in Complex Software Sys-
tems,” IEEE Transactions on Parallel and Distributed Systems, 20(5): 641-
653, 2009.

Aris Anagnostopoulos, Luca Becchetti and Carlos Castillo,
“Power in Unity: Forming Teams in Large-Scale Community Systems,”
Proceedings of the 19th ACM international conference on Information and
knowledge management (CIKM'10), pp.599-608, Toronto, Canada, Octo-
ber 26-30, 2010.

Mehdi Kargar and Aijun An, “Discovering Top-k Teams of Experts
with/without a Leader in Social Networks,” Proceedings of the 20th ACM
international conference on Information and knowledge management
(CIKM'11), pp.985-994, Glasgow, Scotland, UK, October 24~28, 2011.
Aris Anagnostopoulos, Luca Becchetti and Carlos Castillo,
“Online Team Formation in Social Networks,” Proceedings of the
21st international conference on World Wide Web (WWW'12),
pp-839-847. Lyon, France, April 16-20, 2012.

Syama Rangapuram, Thomas Buhler and Matthias Hein, “To-
wards Realistic Team Formation in Social Networks based on
Densest Subgraphs,” Proceedings of the 22nd international confer-
ence on World Wide Web (WWW'13), pp.1077-1087, Rio de Janei-
ro, Brazil, May 13-17, 2013.

Timo Wolf, Adriam Schréter, Daniela Damian, Lucas D. Panjer and
Thanh H.D. Nguyen, “Mining Task-Based Social Networks to Explore
Collaboration in Software Teams,” IEEE Software, 26(1): 58-66, 2009.
Yichuan Jiang, Yifeng Zhou and Wanyuan Wang, “Task Alloca-
tion for Undependable Multiagent Systems in Social Networks,”
IEEE Transactions on Parallel and Distributed Systems, 24(8): 1671-
1681, 2013.

Wanyuan Wang and Yichuan Jiang, “A Practical Negotiation-Based
Team Formation Model for Non-Cooperative Social Networks,” Pro-
ceedings of the 2014 IEEE International Conference on Tools with Artificial In-
telligence (ICTAI-14), Limassol, Cyprus, November 10-12, 2014.

Yichuan Jiang, Yifeng Zhou, Yunpeng Li, “Reliable Task Allocation
with Load Balancing in Multiplex Networks,” ACM Transactions on Au-
tonomous and Adaptive Systems, DOIL: http://dx.doi.org/10.1145/2700327,
in press.

Wanyuan Wang and Yichuan Jiang, “Community-Aware Task
Allocation for Social Networked Multiagent Systems,” IEEE
Transactions on Cybernetics, 44(9):1529-1543, 2014.

Wei Chen, Yajun Wang and Siyu Yang, “Efficient Influence
Maximization in Social Networks,” Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining(KDD’09), pp.199-208, Paris, France, June 28-July 01,
2009.

Sudip Misra, Sujata Pal and Barun Kumar Saha, “Distributed
Information-Based Cooperative Strategy Adaptation in Oppor-
tunistic Mobile Networks,” IEEE Transactions on Parallel and
Distributed Systems, 10.1109/TPDS.2014.2314687, 2014.

Matthias Sutter and Christina Strassmair, “Communication,
Cooperation and Collusion in Team Tournaments-An Experi-

12

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29

—

[30]

[31]

[32]

[33]

[34]

mental Study,” Games and Economic Behavior, 66(1): 506-525,
2009.

Mathijs de Weerdt, Yinggian Zhang and Tomas Klos, “Multiagent Task
Allocation in Social Networks,” Autonomous Agents and Multi-Agent Sys-
tems, 25(1): 46-86, 2012.

Thuan Duong-Ba, Thinh Nguyen, Duc A. Tran, “DAROS: Distributed
User-Server Assignment and Replication for Online Social Networking
Applications,” Proceedings of the 2013 International Conference on Compu-
ting, Networking and Communications (ICNC-13), pp.456-460, San Diego,
USA, January 28-31, 2013.

Federico Bergenti, Enrico Franchi and Agostino Poggi, “Agent-
based Social Networks for Enterprise Collaboration,” Proceedings
of the IEEE 20th International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE'11), pp.25-28,
Paris, France, June 27-29, 2011.

Ka-Po Chow and Yu-Kwong Kwok, “On Load Balancing for Distribut-
ed Multiagent Computing,” IEEE Transactions on Parallel and Distributed
Systems, 13(8): 787-801, 2002.

Jiming Liu, Xiaolong Jin and Yuanshi Wang, “Agent-based Load Bal-
ancing on Homogeneous Minigrids: Macroscopic Modeling and Char-
acterization,” IEEE Transactions on Parallel and Distributed Systems, 16(7):
586-598, 2005.

Tino Schlegel, Peter Braun and Ryszard Kowalczyk, “Towards Auton-
omous Mobile Agents with Emergent Migration Behaviour,” Proceed-
ings of the 5th International Conference on Autonomous Agents and Multia-
gent systems (AAMAS'06), pp.585-592, Hakodate, Japan, May 8-12, 2006.
Ramachandra Kota, Nicholas Gibbins and Nicholas R. Jennings, “Self-
Organising Agent Organisations,” Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS'10),
pp.797-804, Budapest, Hungary, May 10-15, 2009.

Bo An, Victor Lesser, David Irwin and Michazel Zink, “Automated
Negotiation with Decommitment for Dynamic Resource Allocation in
Cloud Computing,” Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS'10), pp.981-988, To-
ronto, Canada, May 10-14, 2010.

Dayong Ye, Minjie Zhang and Danny Sutanto, “Self-Adaptation-Based
Dynamic Team Formation in A Distributed Agent Network: A Mecha-
nism and A Brief Survey,” IEEE Transactions on Parallel and Distributed
Systems. 24(5): 1042-1051, 2013.

Matthew E. Gaston and Marie desJardins, “Agent-Organized Networks
for Dynamic Team Formation,” Proceedings of the 4th international Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS'05), pp.230-
237, Utrecht, Netherlands, July 25-29, 2005.

Bijan Ranjbar-Sabraei, Haitham Bon Ammar, Daan Bloem-
bergen, Karl Tuyls and Ggerhard Weiss, “Evolution of Coopera-
tion in Arbitrary Complex Networks,” Proceedings of the 13th In-
ternational Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS’2014), pp.667-684, Paris, France May 5-9, 2014.
Jonathan P. Pearce, Milind Tambe and Rajiv Maheswaran,
"Solving Multiagent Networks Using Distributed Constraint
Optimization,” Al Magazine, 29(3): 47-62, 2008.

Xiaoming Zheng and Sven Koenig, “K-Swaps: Cooperative
Negotiation for Solving Task-Allocation Problems,” Proceedings of
the 22nd International Joint Conference on Artificial Intelligence (IJCAI'09),
Pp. 373-378, Pasadena, California, USA, July 11-17, 2009.

Dov Monderer and Lloyd S. Shapley, “Potential Games,” Garmes and
Economic Behavior, 14(1): 124-143, 1996.

Geogre Christodoulou and Elias Koutsoupias, “The Price of
Anarchy of Finite Congestion Games,” Proceedings of the 37th
annual ACM symposium on Theory of computing (STOC’05), pp.67-
73, Baltimore, USA, May 22-24, 2005.

Duncan]. Watts and Steven H. Strogatz, “Collective Dynamics of

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

‘Small-World’ Networks,” Nature, 393(6684): 440-442, 1998.

Albert Laszl6 Barabasi and Réka Albert, “Emergence of Scaling in Ran-
dom Networks,” Science, 286(5439): 509-512, 1999.

Federico Bergenti, Enrico Franchi, and Agostino Poggi, “Selected Mod-
els for Agent-Based Simulation of Social Networks,” Proceedings of the
3rd Symposium on Social Networks and Multiagent Systems
(SNAMAS'11), pp.27-32, Yorkshire, UK, April 4-5, 2011.

Béla Bollobas, “Random Graphs,” Cambridge University Press, 2nd Edi-
tion, 2001.

Shaomei Wu, Atish Das Sarma, Alex Frabrikant, Silvio Lattanzi
and Andrew Tomkins, "Arrival and Departure Dynamics in So-
cial Networks," Proceedings of the 6th Web Search and Data Mining Con-
ference (WSDM'13), pp.223-242, Rome, Italy, February 4-8, 2013.
Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe and Makoto Yokoo,
“Adopt: Asynchronous Distributed Constraint Optimization with Qual-
ity Guarantees,” Artificial Intelligence, 161(1-2): 149-180, 2005.

Roger Mailler and Victor Lesser, “A Cooperative Mediation-
Based Protocol for Dynamic Distributed Resource Allocation,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, 36(1): 80-91, 2006.

Yichuan Jiang, J.C. Jiang, “Diffusion in Social Networks: A Mul-
tiagent Perspective,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 45(2): 198 — 213, 2015.

(35]

[36]

(37]

(38]

[39]

[40]

[41]

Wanyuan Wang (S'13) received his BS de-
gree in information and computing science
from Nanjing University of Aeronautics and

[o Astronautics, Nanjing, China, 2011. He is
g £ currently pursuing a Ph.D. degree at the Dis-
) tributed Intelligence and Social Computing
(Laboratory, School of Computer Science and

7 Engineering, Southeast University. He has

published several articles in refereed journals

and conference proceedings, such as the
IEEE Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Cybernetics, and the IEEE International Conference
on Tools with Artificial Intelligence (ICTAI). He won the best student
paper award from ICTAI'l4. His main research interests include
social networks and multiagent systems.

Yichuan Jiang (SM'13) received his PhD
degree in computer science from Fudan Uni-
versity, Shanghai, China, in 2005. He is cur-
rently a full professor and the director of the
Distributed Intelligence and Social Computing
Laboratory, School of Computer Science and
Engineering, Southeast University, Nanjing,
China. His main research interests include
multiagent systems, social networks, social
computing, and complex distributed systems.
He has published more than 80 scientific
articles in refereed journals and conference
proceedings, such as the IEEE Transactions on Parallel and Distrib-
uted Systems, the IEEE Transactions on Cybernetics, the IEEE
Transactions on Systems, Man, and Cybernetics: Systems, the IEEE
Transactions on Systems, Man, and Cybernetics-Part C: Applications
and Reviews, ACM Transactions on Autonomous and Adaptive Sys-
tems, the Journal of Parallel and Distributed Computing, the Interna-
tional Joint Conference on Atrtificial Intelligence (IJCAI), and the In-
ternational Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS). He won the best paper award and best student pa-
per award, respectively, from PRIMA and ICTAIl. He is a senior
member of IEEE, a senior member of CCF and CIE, a member of
the editorial board of Advances in Internet of Things, an editor of
International Journal of Networked Computing and Advanced Infor-
mation Management, an editor of Operations Research and Fuzziol-
ogy, and a member of the editorial board of the Chinese Journal of
Computers.

