
A Friend’s Eye is A Good Mirror:
Synthesizing MCU Peripheral Models from Peripheral Drivers

Chongqing Lei†, Zhen Ling†∗, Yue Zhang‡, Yan Yang†, Junzhou Luo†, Xinwen Fu§

† Southeast University, Email: {leicq, zhenling, yanyang, jluo}@seu.edu.cn
‡ Drexel University, Email: zyueinfosec@gmail.com

§ University of Massachusetts Lowell, Email: xinwen fu@uml.edu

Abstract
The extensive integration of embedded devices within the
Internet of Things (IoT) has given rise to significant secu-
rity concerns. Various initiatives have been undertaken to
bolster the security of these devices at the software level, in-
volving the analysis of MCU firmware and the implementa-
tion of automatic MCU rehosting methods. However, exist-
ing hardware-oriented rehosting techniques often face scal-
ability challenges, while firmware-oriented approaches may
have limited universality and fidelity. To address these limi-
tations, we propose PERRY, a system that synthesizes faith-
ful and extendable peripheral models for MCUs. By extract-
ing peripheral models from hardware drivers, PERRY ensures
compatibility and accurate emulation of targeted MCUs. The
process involves gathering hardware metadata, analyzing
driver code, capturing traces of peripheral accesses, and con-
verting software beliefs into hardware behaviors. PERRY is
implemented with approximately 19,000 lines of code. A
comprehensive evaluation of 75 firmware samples has show-
cased its effectiveness, consistency, universality, and scal-
ability in generating hardware models for MCUs. PERRY
can efficiently synthesize hardware models consistent with
the actual hardware and achieve a 74.24% unit test pass-
ing rate, outperforming the state-of-the-art techniques. The
hardware models produced by PERRY can faithfully emulate
diverse firmware and can be readily expanded with minimal
manual intervention. Through case studies, we show that
PERRY can help reproduce firmware vulnerabilities, discover
specification-violation bugs in drivers, and fuzz RTOS for
vulnerabilities. These case studies have led to the identifica-
tion of two specification-violating bugs and the discovery of
seven new vulnerabilities, underscoring PERRY’s potential to
enhance various security-focused tasks.

1 Introduction

The advent of the Internet of Things (IoT) has led to the ex-
tensive integration of embedded devices in various domains
such as smart homes and industrial IoT, enabling enhanced
connectivity and functionality. These embedded devices pre-
dominantly utilize microcontroller units (MCUs) to strike a

∗Corresponding author: Prof. Zhen Ling of Southeast University, China.

balance between power efficiency and computational capa-
bilities. However, in the context of extensive deployment
of MCU-based IoT devices, ensuring their security is of ut-
most importance. These interconnected devices are suscep-
tible to numerous vulnerabilities and security threats (e.g.,
unauthorized access, data breaches, and malicious attacks),
which jeopardize the confidentiality, integrity and availabil-
ity of sensitive information, presenting substantial risks to
individuals and organizations [23, 30, 36].

Efforts have been made to bolster the software-level secu-
rity of embedded devices, primarily through MCU firmware
analysis [5, 9, 15, 31, 40, 44, 56, 61]. Among various analy-
sis techniques, automatic MCU rehosting has emerged as a
popular method. It involves running firmware in a virtual en-
vironment separate from the original hardware platform, al-
lowing analysts to employ advanced dynamic analysis tech-
niques and attain MCU platform independence. However,
hardware-oriented rehosting techniques [9, 31, 56] rely on
the actual hardware platform, employing hardware-in-the-
loop emulation or record-and-replay mechanisms, which
pose scalability challenges. Conversely, firmware-oriented
rehosting techniques [5,15,44,61], such as register-level ap-
proaches, infer peripheral responses based on register ac-
cesses but have limited universality and fidelity. Given these
inherent limitations in the current state of research, there is
an urgent demand for further advancements in this domain.

However, the task of creating accurate and adaptable
peripheral models for MCUs is an exceedingly complex un-
dertaking. It necessitates seamless integration, compatibility,
and precise emulation of specific MCUs, all while grappling
with the intricacies of hardware intricacies. Fortunately, we
have observed that hardware is consistently accompanied by
corresponding hardware drivers, which enable firmware to
effectively access and utilize the hardware. These hardware
drivers explicitly express expectations on corresponding
hardware behaviors (i.e., software beliefs), which encom-
pass crucial information about the behavior of the underlying
hardware. This approach brings forth significant advantages
since the drivers inherently conform to the underlying
hardware for normal operation, ensuring that the inferred
hardware models are universally applicable and accurate.

Building upon this observation, we introduce PERRY, a
comprehensive methodology comprised of four essential

steps. First, we collect hardware metadata, acquire the
driver source code, compile it into LLVM bitcode, and
extract supplementary information using Clang/LLVM.
Second, we analyze the driver bitcode, establish a symbolic
execution environment, and capture traces of peripheral
accesses through symbolic execution. Third, from these
traces, we extract software beliefs about the underlying
hardware and convert them into hardware behaviors. Finally,
by using the inferred hardware behaviors and user inputs,
we fill in the gaps within the hardware model template,
resulting in a complete and valid hardware model. This
synthesized hardware model can be seamlessly integrated
into an emulator such as QEMU, enabling the emulation of
diverse firmware on the target MCU.

During the design of PERRY, we face several challenges,
all of which are successfully addressed. For instance, we
introduce a set of rules to identify software beliefs within
drivers and convert these beliefs into hardware behaviors.
Additionally, we tackle the challenge of efficiently analyz-
ing driver libraries through symbolic execution by breaking
loops and eliminating scoped constraints.

We implement PERRY by leveraging Clang/LLVM [33],
KLEE [4], and Z3 [11], incorporating approximately 19,000
lines of our own code. We conduct a comprehensive eval-
uation of PERRY using 75 firmware samples, assessing its
efficiency, consistency, universality, and scalability. Evalu-
ation results on 10 driver libraries show that PERRY can in-
fer hardware behaviors efficiently for over 30 MCUs. These
behaviors are consistent with actual hardware, yielding a
74.24% unit test passing rate and surpassing the state-of-
the-art. Hardware models generated by PERRY can be di-
rectly used to emulate various firmware with high fidelity,
and can be easily extended to support more non-trivial hard-
ware functionalities with minimum manual efforts.

We conduct three case studies to illustrate the poten-
tial security applications of PERRY. In the first study,
we demonstrate that hardware models generated by PERRY
could rehost BLE host firmware, facilitating the replica-
tion of BLE protocol stack vulnerabilities. In the second
case study, we demonstrate how hardware models inferred
from drivers could be cross-referenced with correspond-
ing hardware specifications, allowing us to identify devia-
tions or violations within the drivers. Finally, in the third
case study, we fuzz real-time operating systems (RTOS) and
uncover vulnerabilities by emulating RTOS with PERRY-
generated hardware models. Consequently, we discover two
specification-violation bugs in drivers and seven new vulner-
abilities in RTOS, underscoring the versatility and practical-
ity of PERRY in the realm of security.

Our major contributions are summarized as follows.

• Novel Insights. We demonstrate that drivers expose in-
formation about the behaviors and characteristics of the
underlying hardware, which can be effectively extracted
and processed to infer actual hardware behaviors.

• Practical Tool. We introduce PERRY, which collects
hardware metadata and driver source code, analyzes the
driver’s LLVM bitcode to capture traces of peripheral
access, extracts hardware behaviors from these traces
for symbolic execution, and subsequently completes the
hardware model template with the inferred behaviors.
• Extensive Evaluations. We perform a thorough evalua-

tion of PERRY with 75 firmware samples to demonstrate
its efficiency, consistency, universality, and scalability.
PERRY can efficiently synthesize faithful hardware
models and achieve a 74.24% unit tests passing rate,
outperforming the state-of-the-art. PERRY-generated
hardware models can be used to emulate diverse firmware
with minimum manual efforts.
• Security Implications. Our security case studies demon-

strate the capability of PERRY in replicating BLE protocol
stack vulnerabilities, detecting specification-violation
bugs, and fuzzing RTOS for new vulnerabilities.

Availability. PERRY is open source at
https://github.com/VoodooChild99/perry.

2 Background

2.1 MCU-based Embedded Systems

Architecture of MCU-based Embedded Systems. MCU-
based embedded systems refer to resource-constrained
devices built for specific purposes, utilizing MCUs as
the core processing units. As shown in Figure 1, these
systems run firmware, which contains the control logic
and interacts with various peripherals through peripheral
drivers. The firmware can be executed on top of an MCU
with a lightweight RTOS or directly on the hardware
(bare-metal). In these systems, the peripherals expose in-
terfaces through registers that can be accessed by the CPUs
using memory-mapped I/O (MMIO). By accessing these
MMIO registers, the firmware configures working modes,
acquires the working status of peripherals, and performs
data exchanges with external environment, enabling a wide
range of hardware-related functionalities.

Other Parts

Drivers

Firmware

CPUs

...

MMIO Range

...

SRAM/ROM/Flash

Physical Memory

Load/Store

Register N

...

Register 0

Register N

...

Register 0

Peripheral

Interrupt

DMA

External Env

Other Parts

Drivers

Firmware

CPUs

...

MMIO Range

...

SRAM/ROM/Flash

Physical Memory

Load/Store

Register N

...

Register 0

Peripheral

Interrupt

DMA

External Env

Figure 1: MCU-based embedded systems architecture.

At a high level, MCU drivers are the proxy between the

https://github.com/VoodooChild99/perry

software world and the hardware world. As such, they must
translate software requests into hardware interactions, read
hardware responses, and provide them back to the software.
Software will then perform various tasks (e.g., processing
protocol packets) utilizing these results.

MCU Peripherals. MCU peripherals, in addition to passive
CPU access, utilize interrupts to notify the CPU of specific
hardware events. For example, a UART triggers an inter-
rupt to alert the firmware to read incoming data. Peripherals
that support interrupts have distinct interrupt sources con-
nected to the interrupt controller. When certain conditions in
the registers are met, the corresponding interrupt is activated,
and the signal is sent to the CPU if enabled. The CPU then
pauses the ongoing code execution and jumps to the appro-
priate interrupt service routines (ISRs) based on the interrupt
number. Since there is a finite number of interrupt numbers,
multiple hardware events may share the same number, re-
sulting in the same interrupt for different events. To specify
the actual event, peripherals configure diverse register values
to assist ISRs in demultiplexing interrupts. It’s worth not-
ing that peripherals can also interact directly with memory
through direct memory access (DMA), thereby enhancing
firmware throughput without requiring CPU involvement.

2.2 Automatic MCU Rehosting

Rehosting techniques are designed to execute firmware in
a virtual execution environment, independent of the orig-
inal hardware platform. This enables the examination of
MCU firmware through sophisticated dynamic analysis tech-
niques. Rehosting necessitates emulating CPUs and periph-
erals [14]. Emulating CPUs is labor-intensive but a one-time
effort (e.g., QEMU [2]), given the relatively small amount
of CPU models, this is acceptable in general. However, the
number of peripherals is much larger than that of CPU mod-
els (e.g., over 30 peripherals per SoC) [14]. Although it takes
relatively less manual efforts to model a peripheral, the huge
amount of peripherals makes it impractical to emulate all of
them. As a result, emulators often have few hardware mod-
els [14], and analysts have to implement missing models on
their own. This makes automatic MCU peripheral emulation
the key challenge in rehosting. In this section, we review the
literature on rehosting techniques, which can be grouped into
two categories based on their implementation.

• Hardware-Oriented Rehosting. Some techniques lever-
age the inherent capabilities of the hardware platform to
accomplish MCU rehosting, and these approaches can be
categorized into two groups. The first kind of rehosting
technique is called hardware-in-the-loop [9,31,56], where
only CPUs are emulated, and peripheral accesses are for-
warded to real devices. In the second category of tech-
niques [20, 49], peripheral interactions during firmware
executions are recorded, peripheral outputs are analyzed

and then replayed during firmware emulation. However,
these techniques face scalability challenges due to their
reliance on physical hardware.
• Frimware-Oriented Rehosting. Other techniques aim

to provide different virtual execution environments for
different firmware and can be divided into register-level
approaches and function-level approaches. Function-
level techniques [8, 34, 39] involve summarizing periph-
eral driver functions to remove hardware interactions and
only retain semantics, but they are limited by the man-
ual effort required and the lack of practicality due to the
absence of debugging information in MCU firmware bi-
naries. Register-level techniques [5, 15, 44, 61] infer how
peripherals respond to register accesses to explore more
firmware paths instead of faithfully emulating hardware,
but they suffer from low universality (e.g., these models
are firmware-specific and limited in emulating complex
hardware functionalities), making them specific to ana-
lyzed firmware, and low fidelity, as they cannot accurately
replicate actual hardware behaviors.

An concurrent effort [62] seeks to address the aforemen-
tioned limitations by creating highly accurate hardware mod-
els based on hardware specifications. However, this ap-
proach entails a significant amount of manual work, such
as manually identifying expected hardware descriptions in
manuals, converting these descriptions from PDF format to
plain text, and diagnosing the generated rules. These manual
tasks restrict its practicality.

3 Problem and Motivating Example

3.1 Threat Model and Problem Statement

Possible Threats. Malicious data can be injected into the
firmware of a MCU through its peripherals. Vulnerabilities
in the driver code of a peripheral may then be exploited [35].
The malicious data can propagate into other parts of the
firmware such as upper-layer applications, whose vulnera-
bilities may also be exploited [23, 43].

Conducting security analysis on MCU firmware presents
challenges due to significant influences of the hardware on
both control flow (e.g., interrupts) and data flow. Emulating
hardware often requires huge manual efforts, and emulators
typically have few hardware models (see §2.2). Therefore,
automating hardware emulation is essential.

Problem Objectives. Our objective is to autonomously gen-
erate extensible and accurate peripheral models for a target
MCU to facilitate security analysis. The generated periph-
eral model faithfully reflects actual hardware models and can
be easily integrated into existing emulators. As a result, these
models can be used to rehost various firmware, thus enabling
security analysis of MCU firmware.

However, this can be challenging. The integration of these
peripheral models into existing emulators is a complex task,
as ensuring seamless integration and compatibility between
the generated models and the emulator framework can be
technically demanding. It requires careful consideration of
the interface, timing, and synchronization aspects to ensure
the accurate emulation of the targeted MCU. Additionally,
firmware variations, different software versions, and com-
piler optimizations further complicate the task of develop-
ing firmware-independent rehosting techniques. Lastly, the
lack of comprehensive documentation, proprietary compo-
nents, and closed-source firmware can hinder the reverse-
engineering and understanding of hardware behaviors.

Problem Assumptions. We have the following prerequisites
and assumptions. First, we assume that we can access the
source code for at least one implementation of the periph-
eral driver. We believe that requiring the source code for
the driver is reasonable: (i) MCU vendors do make driver
source code public for MCU peripherals. (ii) Any open-
source driver even one by a third party for specific hardware
is sufficient. We conduct a survey on 10 top MCU vendors as
shown in Table 1 and find that all investigated MCU vendors
provide public access to driver source code.

Table 1: The availability of MCU driver source code

Vendor Region Host* Example First Release
(YYYY/MM)

STMicroelectronics Switzerland GH [51] 2019/04
NXP Semiconductors Netherland GH [47] 2021/01
Microchip Technology USA OW [54] 2022/10
Texas Instruments USA GH [26] 2022/12
Renesas Electronics Japan GH [12] 2019/10
Infineon Technologies Germany GH [53] 2019/08
Nuvoton Technology Taiwan, China GH [55] 2021/12
Nordic Semiconductor Norway GH [46] 2017/10
Espressif Systems Mainland China GH [52] 2016/08
GigaDevice Semiconductor Mainland China OW [45] 2023/08

* GH: GitHub, OW: Official Website

Second, we assume the MCU corresponding to the target
firmware is known. Such information can be obtained from
the product brochure or model number printed on the SoC.
It is needed for acquiring corresponding drivers and building
hardware models. For example, Giese [16] identified several
MCU models combing both methods.

Third, like previous efforts [15, 44], we assume that the
hardware metadata of the target MCU is available, including
memory mapping information, CPU model and initial
interrupt vector location. The information can be extracted
from hardware manuals. Specifically, for ARM Cortex-M
MCUs, such information can be obtained more easily by
parsing the Common Micro-controller Software Interface
Standard System View Description (CMSIS-SVD) file [1]
of the target MCU.

3.2 Motivating Example
As discussed in §3.1, synthesizing faithful and extendable
peripheral models for MCUs is a complex task. However, we
have made an observation that allows us to achieve our goal
without the need for additional documentation processing or
component analysis.

Key Insight. We observe that hardware is always
accompanied by corresponding hardware drivers so that
the hardware can be accessed and used by firmware,
and these hardware drivers contain information about
the behaviors of the underlying hardware. Based on this
observation, to achieve our goal, we propose to extract
peripheral models from hardware drivers. As a benefit,
because drivers must respect the underlying hardware to
function normally, hardware models inferred from drivers
are universal and faithful.

We would like to illustrate this observation with a
motivating example. Specifically, peripheral drivers must
effectively manage hardware states to ensure successful
interaction with the hardware and the realization of expected
functionalities. Typically, this is accomplished through
the use of various conditional statements that check the
values of specific hardware registers. Listing 1 shows
the code snippet taken from the universal asynchronous
receiver/transmitter (UART) driver for STM32F7 series
MCUs. The code has been simplified for the ease of reader
comprehension. The API HAL UART Receive() is exposed
to upper-layer applications for receiving incoming data
through UART. According to the specification of STM32F7
UART peripheral [50], the RXNE bit of the ISR register is
set by hardware when incoming data is ready to be read
from the RDR register. Therefore, in correspondence with the
specification, the driver: 1) waits until the RXNE bit is set in
the ISR register (line 5), and then 2) reads the data register
RDR for the incoming data and stores it into a buffer (line 9).

1 // uart.c
2 HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart,

uint8_t *pData, uint16_t Size, uint32_t Timeout) {↪→
3 ...
4 while (Size > 0) {
5 /* wait until UART_FLAG_RXNE flag in the ISR register is

set by the hardware */↪→
6 if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE,

RESET, tickstart, Timeout) != HAL_OK) {↪→
7 return HAL_TIMEOUT;
8 }
9 /* read incoming data from the TDR register */

10 *pData = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
11 ++pData;
12 --Size;
13 }
14 ...
15 return HAL_OK;
16 }

Listing 1: STM32F7xx UART driver code snippet.

Assuming we have no prior knowledge about UART
behaviors when receiving data, we can still deduce this
information from the driver code. First, by analyzing the
code, we can know from the type (details will be elaborated
upon in §4.1) that huart->Instance actually represents a
peripheral, which means accessing its members will access
MMIO registers. Second, by examining all the code paths,
we observe that the data within the RDR register is written
into a data buffer, implying that RDR serves as a data register.
Third, after establishing this understanding, we can analyze
the path constraints and observe that the RDR register is
accessed only when the UART FLAG RXNE flag in the ISR

register is set. This indicates that the flag should be set
by the UART hardware when the incoming data in RDR

is ready to be read – otherwise, the driver will never read
the data. Finally, with the inferred UART behavior, we
insert the following logic into our hardware model to mimic
such hardware behavior: when the UART receives external
inputs, we first move the data into the RDR register and then
set the UART FLAG RXNE flag in the ISR register.

4 PERRY Design

Based on the example in §3.2, we can conclude that to syn-
thesize peripheral models from drivers, we must process the
driver source code to extract useful information (e.g., register
accesses), observe how registers are accessed in drivers, in-
fer hardware behaviors from the observed register accesses,
and finally synthesize a hardware model using these inferred
behaviors. As shown in Figure 2, we propose a system called
PERRY1 to synthesize MCU peripheral models from periph-
eral drivers, which can be divided into four phases:

① Pre-Processing (§4.1). We perform several steps to pre-
pare the input required by the system. This includes
gathering the hardware metadata and acquiring the driver
source code (see §3.1). To facilitate further analysis, we
compile the driver source code into LLVM bitcode and ex-
tract relevant auxiliary information using Clang/LLVM.

② Trace Collection (§4.2). With these inputs in hand, we
proceed to analyze and instrument the driver bitcode to es-
tablish the symbolic execution environment correctly. Ad-
ditionally, we employ symbolic execution to analyze the
driver APIs and capture traces of peripheral accesses.

③ Model Inference (§4.3) Next, we extract software be-
liefs regarding the underlying hardware from the collected
traces and convert these beliefs into hardware behaviors
that support and justify them.

④ Model Synthesis (§4.4). Finally, we utilize the inferred
hardware behaviors along with user inputs to complete the
missing sections in the hardware model template, thereby

1The system is named PERRY because its pronunciation is reminiscent
of the word “peri”, which stands for “peripheral”.

synthesizing a valid hardware model. This generated hard-
ware model can then be seamlessly integrated into the em-
ulator, such as QEMU [2], enabling the emulation of vari-
ous firmware running on the target MCU.

4.1 Pre-Processing

PERRY takes hardware metadata and the driver source
code as inputs. It parses the names and memory ranges of
peripherals to be analyzed and obtains the target hardware
information from hardware metadata. When compiling
the driver source code to LLVM bitcode, we collect three
types of source-level information (SI): loop header location,
success return values, and peripheral structure names.

(SI-I) Loop Header Location. Loop headers (e.g., line 3
in Listing 1) define loop iterations. Drivers typically em-
ploy a waiting strategy, repeatedly reading specific registers
in loop headers, and anticipating hardware updates. These
features greatly aid in inferring hardware models (See §4.3).
”To facilitate model inference, we gather loop header loca-
tions from the driver source code during preprocessing in the
format of “(filename, beginLoc, endLoc)”. For exam-
ple, in Listing 1, the loop header (uart.c, {3, 3}, {3,
18}) at line 3 has beginLoc referring to “w” and endLoc

referring to “)”.

(SI-II) Success Return Values. Drivers often perform a pre-
liminary check to ensure proper functionality of a periph-
eral before certain operations (e.g., reading the data regis-
ter). If the check succeeds, normal operations are carried out
(valid paths). If the check fails, the driver may immediately
return an error status code and skip all subsequent opera-
tions (invalid paths). To accurately infer expected hardware
behaviors and synthesize hardware models, focusing solely
on valid paths and disregarding invalid paths is essential.
To achieve this, we collect return values that indicate suc-
cess, aiding PERRY in identifying valid paths. Drivers com-
monly utilize enums to denote execution status, which pos-
sess semantic features. For instance, the enum value HAL OK

(line 14 in Listing 1) signifies successful execution, while
HAL TIMEOUT (line 6 in Listing 1) indicates a timeout er-
ror. Based on this observation, we gather enum values re-
turned by driver functions and identify success return values
by their names. If a name contains typical words denoting
success (e.g., "ok" or "success"), we consider the corre-
sponding value as a success return value. We contend that
this pattern sufficiently identifies success return values, as
all drivers listed in §5 adhere to this convention.

(SI-III) Peripheral Structure Names. Peripheral registers
are arranged in a compact and contiguous manner within the
peripheral’s address space. To abstract the layout of a periph-
eral, drivers commonly employ structures known as periph-
eral structures, where each structure member represents a
register within the peripheral. Peripheral structure instances

② Trace Collection ③ Model Inference ④ Model Synthesis

Software Belief
Identification

Model
Template

Hardware
Model

Hardware
Behavior Inference

① Pre-Processing

MetadataMetadata

Driver
Src

Driver
Src

LLVM
Bitcode
LLVM

Bitcode

Aux.
Info
Aux.
Info

TracesTraces

Context Setup

Augmented
Symbolic Execution

Loop Header
Locations

Peripheral Structure
Names

Success Return Values
{{}}{{}}

Figure 2: PERRY overview.

are typically hard coded and mapped to the actual periph-
eral address, and drivers directly use these instances to ac-
cess peripherals. However, some peripherals, such as UART,
may share the same peripheral structure. To ensure general-
ity, drivers for such peripherals often avoid using hard-coded
peripheral structure instances. Instead, they allow users to
specify the instance through a parameter. In such cases, we
need to identify these parameters and assign them to the cor-
responding peripheral structure instances. We have observed
that structure instances are typically defined using macros
that follow a common pattern, as shown below:

#define [INSTANCE] (([STRUCT]*) [ADDRESS])

where [INSTANCE] represents the instance name, [STRUCT]
represents the structure name, and [ADDRESS] represents the
peripheral address. For example, the macro below defines
a peripheral instance USART1 at the address USART1 BASE

using the structure USART TypeDef.

#define USART1 ((USART_TypeDef *) USART1_BASE)

By parsing macros in drivers, we can extract peripheral
structure names accordingly.

4.2 Trace Collection
PERRY collects peripheral access traces during the symbolic
execution of driver APIs. To this end, PERRY first ana-
lyzes and instruments the driver bitcode to properly setup the
context for symbolic execution. After this, PERRY records
essential peripheral access information through augmented
symbolic execution.

4.2.1 Context Setup

Five tasks (T) must be performed to properly setup the sym-
bolic execution context for drivers. First, we prepare MMIO
regions to replicate the actual MCU memory layout. Second,
we identify potential entry points for symbolic execution, as
drivers are commonly found in library form. These identified
entry points are then organized to establish their correspond-
ing calling contexts. In the fourth task, we identify and taint
input data buffers to aid in the recognition of data registers.
Lastly, we identify and hook callbacks to aid the inference of
interrupt conditions.

(T1) Prepare MMIO Regions. Peripheral drivers access pe-
ripheral registers by directly accessing specific memory ad-
dresses (i.e. MMIO regions). To enable the symbolic ex-
ecutor to handle register accesses, we pre-map these MMIO
regions. Additionally, we need to track the usage of values
obtained from registers to infer hardware models. To achieve
this, we symbolize all mapped MMIO regions and allocate
unique taint labels to different registers as taint sources.

(T2) Identify Entry Points. Driver code, unlike code with a
pre-defined entry point like main(), is typically presented as
a library. This means that multiple potential entry points (i.e.,
APIs) are exposed without being used. To pinpoint potential
entry points for symbolic execution within drivers, we con-
struct a call graph and identify top-level functions that are not
invoked by other functions. We identify top-level functions
as entry points for two reasons: firstly, top-level functions
typically encapsulate complex peripheral functionalities and
engage in extensive hardware interactions; secondly, inter-
actions between different top-level functions with hardware
are often non-interfering, ensuring comprehensive observa-
tion of hardware behavior.

(T3) Assemble Entry Points. We set up the program en-
vironment (i.e., parameters and global variables) for each
API to enable symbolic execution as they are not directly
used. The entry point assembly algorithm is shown in Algo-
rithm 1. Parameters and global variables are analyzed and
prepared following the principle of avoiding symbolic point-
ers. For pointer variables, we recursively allocate an array
of objects of the underlying type and symbolize their con-
tent (line 21-26). The array length is typically set to 1, un-
less it is a data buffer (see T4) where a larger constant value
is used (e.g., 8). Non-pointer variables are allocated as ob-
jects with their content symbolized (line 29-30). If the object
is a structure, we repeat the above procedure for each field
(line 31-35). Two exceptions are pointers to peripheral struc-
tures and constant global variables. Pointers to peripheral
structures are assigned the corresponding concrete peripheral
physical addresses (line 12). Constant global variables are
not made symbolic as their values remain unchanged. The
above method fails to handle function pointers. Inspired by
MLTA [38], we adopt a light-weight yet effective type anal-
ysis to determine indirect call targets (line 14).

(T4) Taint Input Data Buffers. Driver APIs that send data
to peripheral hardware typically use data buffers to store user

Algorithm 1: Entry Point Assembly Algorithm
Input : Set of identified entry points SAPI
Output: Prepared program environment for symbolic

execution

1 foreach API ∈ SAPI do
2 SetupProgramEnvironment(API);
3 end

4 Function SetupProgramEnvironment(API):
5 Spara,Sglob←AnalyzeParametersAndGlobals(API);
6 foreach var ∈ Spara∪Sglob do
7 SetupVariable(var);
8 end

9 Function SetupVariable(var):
10 if isPointer(var) then
11 if isPeripheralStructPointer(var) then
12 AssignConcreteAddress(var);
13 else if isFuncPtr(var) then
14 FillinFuncPtrByType(var);
15 else
16 AllocateAndSymbolizeArray(var);
17 end
18 else
19 AllocateAndSymbolizeObject(var);
20 end

21 Function AllocateAndSymbolizeArray(ptrVar):
22 pointee← getPointee(ptrVar);
23 len← isDataBuffer(ptrVar) ? CONSTANT : 1;
24 for i = 1 to len do
25 SetupVariable(pointee);
26 end

27 Function AllocateAndSymbolizeObject(var):
28 if ¬isConstant(var) then
29 AllocateObject(var);
30 SymbolizeContent(var);
31 if isStruct(var) then
32 for f ield ∈ getFields(var) do
33 SetupVariable(f ield);
34 end
35 end
36 end

inputs, which are directly written into data registers. Based
on this observation, we adopt a taint-based mechanism to
recognize data registers. We first identify data buffers based
on API parameter types and names. If a parameter has a
buffer type (e.g., uint8 t *) and its name matches common
patterns (e.g., "data"), it is considered a data buffer. We
then taint the content of each identified data buffer to track
data flows from user data to peripheral registers. By analyz-
ing the taints within registers, we can identify data registers
where the taints come from data buffers.

(T5) Hook Callbacks. Interrupt handlers frequently trigger
callbacks upon successfully managing interrupts. By inter-

cepting the callbacks and collecting the associated path con-
straints (see §4.3.1), PERRY can infer interrupt conditions.
Callbacks are recognized as unresolved function pointers or
empty functions with weak linkage. For each identified call-
back, we reroute it to our built-in hook functions.

4.2.2 Symbolic Execution for Trace Collection

PERRY combines symbolic execution and taint analysis
for hardware model inference. Similar to previous ef-
forts [5, 44, 61], peripheral registers are set as non-volatile
symbol/taint sources. However, two challenges arise
due to the limitations of symbolic execution and unique
characteristics of drivers. Firstly, symbolic execution can
lead to state explosion due to extensive loop usage in
drivers. Secondly, symbolic execution can be blocked due
to conflicting constraints caused by hardware. Drivers
initially assume a specific register value, which is then
updated by hardware. Afterwards, drivers might assume
a different value for the same register. However, the two
constraints conflict with each other and symbolic execution
is blocked. To address these challenges, we use two methods
(M): actively breaking loops during symbolic execution
to reduce complexity, and utilizing checkpoints to remove
hardware-related constraints. These mechanisms efficiently
achieve the goal (G) of collecting peripheral register access
traces and execution results for further processing.

(M1) Break Loops for Path Pruning. To facilitate effective
exploration of software-hardware interactions, we employ
loop handling that imposes constraints on program states
rather than terminating them. This approach enables contin-
ued program execution by detecting and exiting loops. When
the symbolic executor encounters a conditional branch in-
struction, it checks for repeated execution of the branch tar-
get beyond a predefined threshold (e.g., twice). If exceeded,
it negates the loop condition and jumps out of the loop, al-
lowing uninterrupted execution.

1 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) { ... }
2 ...
3 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) { ... }

Listing 2: Conflicting constraints due to symbol reuse.

(M2) Remove Constraints using Check-Points. Listing 2
shows an example of conflicting hardware-related con-
straints caused by reusing the same symbol. If the constraint
at line 1 evaluates to false, the constraint on line 3 will al-
ways evaluate to true, and the driver API will return an error
because we cannot break such a loop – the negated loop con-
dition will conflict with existing path constraints. While on
a real device, both constraints can be satisfied since the ac-
cessed register is updated by the hardware before line 3. We

observe that such constraints (e.g., line 1) usually appear as
scoped loop conditions, i.e., their impacts on program execu-
tion is restricted to be within the loop body. Based on this ob-
servation, we propose a check-point-based mechanism to de-
tect and remove these scoped hardware-related constraints.

A check point is defined as a (PC,CS) pair, where CS
denotes a hardware-related constraint, and PC denotes the
code location where CS is introduced. The check point
mechanism maintains a set of check points within the current
function. When a hardware-related constraint evaluates to
true, we check if the corresponding (PC′,CS′) pair exists in
the set. If so, we identify CS′ as a scoped hardware-related
constraint, remove it from the current program state, and
force the program to take the negated branch.

(G) Trace Collection. For each explored program state, we
collect the following information.

• Exit Status (ES): Program states can terminate normally
(i.e., reaching the end of an execution path) or abnormally
(e.g., errors during symbolic execution). Traces from nor-
mally exited program states provide valuable information
for hardware model inference, while traces from other pro-
gram states are less useful.
• API Return Value (RV): Program states with success

return values provide valuable insights into the expected
hardware behavior.
• Path Constraints (CS): The path constraints until pro-

gram state terminates. These constraints help PERRY infer
hardware behaviors.
• Register Accesses (RA): During symbolic execution, the

recorded information for each identified peripheral access
includes: (i) access action A (read or write); (ii) accessed
offset O within the peripheral; (iii) access width W (e.g., 4
bytes); (iv) symbolic expression S returned for a read or to
be written for a write; (v) taint T of the value to be written
(only for writes); (vi) path constraints C until the access;
and (vii) code location L of the access.
• Output Data Buffer Taints (OT): Tainting input data

buffers helps identify data registers (see §4.1). However,
for peripherals with separate registers for receiving and
transmitting data, the previous mechanism only identifies
transmitting data registers. To address this, we addition-
ally collect taints (OT) from data buffers after executing
the API. If a taint from a register is found in OT , the
register is recognized as a receiving data register.
• Callback Hook Invocation Constraints (CC): The path

constraints when the callback hook is invoked. These
constraints help PERRY infer interrupt conditions.

4.3 Model Inference

With the collected driver traces, we perform model infer-
ence, which involves identifying basic software beliefs and

convert them into hardware behaviors (§4.3.1), and identi-
fying complex software beliefs and transforming them into
hardware behaviors using on-demand analysis (§4.3.2).

4.3.1 Basic Software Beliefs Identification and Hard-
ware Behaviors Transformation

Software beliefs represent software’s expectations on hard-
ware, i.e., hardware is believed to perform certain function-
alities after instructions issued by software. The most ba-
sic beliefs reside in conditional statements checking whether
hardware has reached expected states. For example, check-
ing status registers before accessing peripheral functionali-
ties (e.g., read incoming data) to guarantee the success of
subsequent operations, or after configuring peripherals (e.g.,
enable a clock) to indicates the success of previous configu-
rations. These checks represent the software’s assumptions
regarding expected hardware behaviors and can be employed
to infer actual hardware behavior. We categorized four dis-
tinct basic types of software beliefs (SB) related to antici-
pated hardware behaviors:

• Reading data registers (RDR): These beliefs are derived
from constraints related to data register reads.
•Writing data registers (WDR): These beliefs stem from

constraints related to data register writes. We observe
three sub-kinds of WDR beliefs: the first write (FW), be-
tween two writes (BW) and after all writes (AW).
• Handling interrupts (HINT): These beliefs are drawn

from constraints associated with interrupt handling.
• Updating non-data registers (UNDR): These beliefs are

inferred from correlations among non-data registers (e.g.,
updating one register leads to the software waiting for an-
other to be updated).

Software may also express beliefs using other statements.
For example, drivers may store the variable representing
source address into the source address register of a DMA pe-
ripheral, under the belief that the register holds DMA trans-
mission source address. Unlike the above SBs that can be lo-
cated by conditional statements, such beliefs are harder to lo-
cate as they also involve semantic information of drivers. We
therefore equip PERRY with the on-demand analysis capabil-
ity to handle such complex SBs (see §4.3.2). We demonstrate
how to transform basic SBs into hardware behaviors below.

RDR Transformation. RDR beliefs capture the constraints
that software should follow to successfully read incoming
data from data registers. Speculatively, when the hardware
receives incoming data and updates the corresponding data
registers, it should satisfy the constraints specified in RDR
beliefs. This enables the software to detect the signal and
read the incoming data. To analyze the hardware behavior,
we group RDR beliefs based on the accessed data register
(using offset O). Then, we derive the hardware behavior for

receiving incoming data through the data register by com-
bining all the constraints using disjunction. Formally, for a
group of RDR beliefs {(Ci,SymO) |i = 1, ...,N}, we derive a
hardware behavior:

BRDR :=
N∨

i=1
Ci (1)

WDR Transformation. WDR beliefs capture the con-
straints that software should follow to successfully send
data through data registers. While there are three sub-kinds
of WDR beliefs, it can be assumed that the constraints
in WDR beliefs must evaluate to true after user data is
written into a data register. Otherwise, the data trans-
mission process in the software would fail. To analyze
the hardware behavior, we group WDR beliefs for each
sub-category by the accessed data register. This results in
a triple of WDR belief groups (GFW ,GBW ,GAW) for each
data register corresponding to three sub-kinds. For each
triple, we derive the hardware behavior when transmitting
data through the data register by disjuncting constraints
within each triple element, then conjuncting the results.
Formally, assume GFW =

{(
Ci

FW ,SymO
)
|i = 1, ...,N

}
,

GBW =
{(

Ci
BW ,SymO

)
|i = 1, ...,M

}
, and GAW ={(

Ci
AW ,SymO

)
|i = 1, ...,K

}
, we derive the following

hardware behavior:

BWDR :=

(
N∨

i=1
Ci

FW

)
∧

(
M∨

i=1
Ci

BW

)
∧

(
K∨

i=1
Ci

AW

)
(2)

HINT Transformation. HINT beliefs consist of path con-
straints that exist before executing interrupt handling oper-
ations in ISRs. We regard data register reads/writes and
callback hook invocations as interrupt handling operations.
These constraints include triggering conditions for different
hardware events. Since the interrupt condition is composed
of these hardware event triggering conditions, we can infer
the actual interrupt triggering condition by combining all the
HINT belief constraints using disjunction. In other words,
the interrupt will be triggered if at least one event is trig-
gered. Formally, assuming {Ci|i = 1, ...,N} represents all the
HINT beliefs, we derive the following hardware behavior:

BHINT :=
N∨

i=1
Ci (3)

UNDR Transformation. UNDR beliefs describe the rela-
tionship between two non-data registers. If a register RegA
is written in a specific way, it is expected that the hardware
will update another register RegB accordingly. To translate
UNDR beliefs into hardware behaviors, we need to consider
the write semantics (how RegA’s value is changed) and the
update semantics (how RegB should be updated). In most
cases, the value written into RegA is bounded and the ex-
pected value for RegB can be easily derived from the path

constraints. We propose a bit value variation-based approach
to infer write semantics under such cases. However, some-
times the value written into RegA is unbounded, making the
above method fail to infer the write semantic. To handle such
cases, we additionally propose a write-update dependency
resolution method to synthesize a linear formula between the
written value and the expected update value. The technical
details of the proposed two methods can be found in Ap-
pendix A. With the inferred write semantic WS and update
semantic US, the hardware behavior can be derived as:

BUNDR := (WS,US) (4)

4.3.2 On-Demand Complex Software Beliefs Identifica-
tion and Hardware Behaviors Transformation

PERRY supports on-demand analysis to locate complex SBs
and transform them into hardware behaviors. Analysts can
use commands to instruct PERRY to identify complex SBs.
PERRY will then transform these beliefs into hardware be-
haviors accordingly. PERRY recognizes three types of com-
mands from analysts – PARAM, CALLBACK and FUNCTION.
• PARAM: PARAM commands describe the software belief

where specific data is supposed to be stored into dedicated
registers. A PARAM command contains parameters of a
function. PERRY handles such commands by locating all
registers where the specified parameters are written into,
and outputs these registers as hardware behaviors.
• CALLBACK: CALLBACK commands describe the soft-

ware belief where certain hardware events are supposed
to happen. A CALLBACK command contains the name of a
callback. PERRY handles CALLBACK commands by gath-
ering path constraints when the specified callback is in-
voked, and generates a hardware behavior expressed as
the disjunction of these constraints.
• FUNCTION: FUNCTION commands describe the soft-

ware belief where certain hardware functionalities should
be triggered by invoking the function. A FUNCTION com-
mands contains the name of a function. PERRY han-
dles FUNCTION commands by locating all register updates
within the specified functions, and generates hardware be-
haviors based on their write semantics.

4.4 Model Synthesis

The last step of PERRY is to synthesize a hardware model
that can be directly integrated into emulators using the in-
ferred hardware behaviors. To this end, we adopt a template-
based synthesis approach. PERRY first takes user-provided
hardware metadata file and generate a basic hardware model
template file, where only basic hardware behaviors are in-
cluded – register reads return the current register value, and
register writes will update corresponding registers. Other

hardware behaviors are left as holes, which are then synthe-
sized and filled based on the inferred hardware behaviors.
We demonstrate the synthesis procedure for behaviors in-
ferred from basic SBs (basic behaviors) and complex SBs
(complex behaviors) respectively.

Basic Behaviors. There are four kinds of holes corre-
sponding to the four basic behaviors, we reuse the name of
corresponding belief as introduced in §4.3.1 as the name
of each kind of holes for simplicity. For RDR holes, we
synthesize a function that takes inputs from the host, store
inputs into the involved receiving data register, and update
other registers to validate BRDR. Whenever a receiving
data register is read, we update relevant registers again to
invalidate BRDR, so that the software cannot read the data
register when there is no data available. For WDR holes, we
synthesize a function that sends the written data to the host,
and update relavant registers to validate BWDR. For HINT
holes, we synthesize a function that evaluate and update
the interrupt firing condition according to BHINT . For each
register involved in the condition, we insert a call to the
introduced function after its value is updated to update the
interrupt condition. For UNDR holes, we insert code after
writes to related registers: if the written value meets the
corresponding condition in BUNDR, we update registers to
reach the expected value as indicated in BUNDR.

Complex Behaviors. The meanings of complex behaviors
generated through on-demand analysis (see §4.3.2) are re-
lated with the semantics of the used commands, which are
pre-defined by analysts according to the target peripheral.
With such semantics, these behaviors can then be interpreted
and utilized to complete the template. Note that for periph-
erals of the same kind, the involved commands as well as
their semantics can be reused across different MCUs, and
one only has to adapt the command contents for each differ-
ent driver library family. Following this procedure, we suc-
cessfully synthesized DMA models for STM32 MCUs with
only 3 commands.

5 Evaluation

We implement PERRY for ARM Cortex-M MCUs using
Clang/LLVM [33], KLEE [4] and Z3 [11], which consists of
about 19,000 lines of C++ and Python code. In this section,
we first present details of our testing environment (§5.1),
then we organize the results of our study around four key
research questions (RQ) we attempt to answer (§5.2). Those
research questions are listed below:

(RQ 1): How effective is PERRY in inferring hardware be-
haviors from drivers, considering the adoption of symbolic
execution (i.e., efficiency)?

(RQ 2): Are the inferred hardware behaviors consistent with
actual hardware behaviors (i.e., consistency)?

(RQ 3): Can hardware models generated by PERRY be used
to emulate various firmware (i.e., universality)?

(RQ 4): Can hardware models generated by PERRY be easily
fixed or extended to support missing hardware functional-
ities (i.e., scalability)?

Table 2: Summary of selected libraries

Vendor Driver Library MCUs

ST

STM32CubeF0 v1.11.3 STM32F0 series
STM32CubeF1 v1.8.4 STM32F1 series
STM32CubeF4 v1.26.2 STM32F4 series
STM32CubeF7 v1.16.2 STM32F7 series
STM32CubeL0 v1.12.1 STM32L0 series

NXP

MCUXpresso SDK v2.12.0 FRDM-K22F
MCUXpresso SDK v2.11.0 FRDM-K64F
MCUXpresso SDK v2.8.0 FRDM-K82F
MCUXpresso SDK v2.2.0 FRDM-KL25Z
MCUXpresso SDK v2.12.0 LPC51U68

Microchip Advanced Software Framework v3.52.0

SAM4L-EK
SAM4E Xplained Pro

SAM4S Xplained
SAM E70 Xplained

SAM V71 Xplained Ultra
SAM3X8E

5.1 Experiment Setup and Methodology

Experiment Setup. We select 10 driver libraries from
three top MCU vendors as shown in Table 2. A driver li-
brary may cover a series of MCUs, e.g., the STM32CubeF4
driver library can be used by all STM32F4xx MCUs such as
STM32F469/479, STM32F407/417 and STM32F413/F423.
Therefore, the selected driver libraries can cover over 30
MCUs. For each driver library, the corresponding SVD files
are already contained within driver libraries, and we only
need to provide RAM/ROM range information for the hard-
ware metadata file before the evaluation, which requires a
small amount of one-time effort (specifying CPU models,
memory regions, etc.) and is a common procedure in existing
methods [15,44]. Driver libraries for NXP MCUs are gener-
ated by the MCUXpresso SDK builder tool [41] provided by
NXP and hence have different versions. The driver library
from Microchip supports all MCUs, but we have to compile
it for each MCU. All experiments are conducted on an In-
tel Xeon E5-2620 v2 @ 2.10GHz machine running Ubuntu
20.04 TLS, equipped with 64GB memory.

Methodology. We first evaluate time consumption of
applying PERRY to synthesize hardware models from the
selected driver libraries to answer RQ 1. Then, we evaluate
the passing rate achieved by the generated models on P2IM
unit tests [15] to answer RQ 2. To address RQ 3, we use
the hardware models to emulate firmware samples, inspect
whether they can perform expected functionalities, and
evaluate the success rate. To answer RQ 4, we use the

Table 3: PERRY model consistency.

Peri. Unit test STM32F103 FRDM-K64F ATSAM3X8E Passing
Rate

Arduino RIOT* NUTTX RIOT Arduino RIOT

ADC read converted values ✓ - ✓ ✓ ✓ ✓ 5/5
DAC write values for conversion - - - - ✓ ✓ 2/2

GPIO
execute the interrupt callback ✓ ✗(RCC ✧) ✓ ✓ ✓ ✓ 5/6
read a pin ✓ ✗(RCC ✧) ✓ ✓ ✓ ✓ 5/6
set/clear a pin ✓ ✗(RCC ✧) ✓ ✓ ✓ ✓ 5/6

PWM perform basic configuration ✓ - ✓ ✓ ✓ ✓ 5/5

I2C receive bytes ✗(▲) - ✗(▲) ✗(✧) ✓ - 1/4
send bytes ✗(▲) - - ✗(✧) ✓ - 1/3

UART receive bytes ✓ ✗(RCC ✧) ✓ ✓ ✗(✧) ✗(✧) 3/6
transmit bytes ✓ ✗(RCC ✧) ✓ ✓ ✗(✧) ✓ 4/6

SPI receive bytes ✓ ✗(RCC ✧) ✓ ✓ ✓ ✓ 5/6
transmit bytes ✓ ✗(RCC ✧) - ✓ ✓ ✓ 4/5

TIMER execute the interrupt callback - ✗(RCC ✧) - ✓ - ✓ 2/3
read counter values - ✗(RCC ✧) - ✓ - ✓ 2/3

LoC to Fix 3 (1 for RCC, 2 for I2C) 1 (for I2C) 2 (for UART) 49/66(74.24%)

* All STM32F103/RIOT unit tests failed due to a single wrong behavior in the RCC peripheral. Unit tests marked with “-” do not exist. ✧
represents implicit assumptions on hardware and ▲ represents in-context register operations.

LoC required to fix/extend models as metric to evaluate the
involved manual efforts.

5.2 Experiment Results

STM
32F

0xx

STM
32F

1xx

STM
32F

4xx

STM
32F

7xx

STM
32L

0xx

FRD
M-K2

2F

FRD
M-K6

4F

FRD
M-K8

2F

FRD
M-KL2

5Z

LPC
Xpr

esso
51U

68

SAM
4L-E

K

SAM
4E-X

plai
ned

-Pro

SAM
4S-X

plai
ned

SAM
E70

-Xpl
aine

d

SAM
V71

-Xpl
aine

d-U
ltra
SAM

3X8
E

0

1

2

3

4

118.3 22.4 10.0 33.0 535.3 10.7 19.4 10.2 2.6 2.4 0.3 1.7 1.9 3.5 3.4 1.7

118.5 22.6 10.0 33.1 534.9 10.8 19.3 10.2 2.5 2.4 0.3 1.7 1.9 3.5 3.4 1.7

118.2 22.3 10.0 33.0 535.6 10.8 19.3 10.2 2.5 2.4 0.3 1.7 1.9 3.5 3.4 1.7

117.8 22.5 10.1 32.9 536.9 10.8 19.3 10.3 2.5 2.4 0.3 1.7 1.8 3.5 3.4 1.7

117.8 21.9 10.3 33.0 536.2 10.8 19.4 10.2 2.5 2.4 0.3 1.7 1.9 3.5 3.5 1.6

100 200 300 400 500

Figure 3: Model synthesis time consumption (# minutes).

Efficiency (to Answer RQ1). We use PERRY to synthesize
peripheral models for all MCUs listed in Table 2. We con-
duct experiments for each MCU 5 times to eliminate the
influence of random factors. We list the number of col-
lected traces, the number of inferred hardware behaviors,
and synthesized peripheral models in Table 4. We use time
consumption to evaluate PERRY’s efficiency in synthesizing
hardware models, and the results are listed in Figure 3.

The results demonstrate that PERRY can effectively col-
lect execution traces by symbolically exploring driver library
paths and infer peripheral behaviors for most MCUs within
reasonable time budget (i.e., less than 33 minutes). PERRY
needs time (∼9 hours) when the target driver library is over
complicated (e.g., 4,820,407 traces from the STM32CubeL0
driver library).

Consistency (to Answer RQ2). We validate the consis-
tency of the synthesized models by PERRY using P2IM unit
tests [15]. The authors of P2IM provide 48 firmware images
consisting of 66 valid unit tests to validate the functional-
ity of emulated hardware platforms. These unit tests cover
eight categories of peripherals on different combinations of
three MCUs (STM32F103, FRDM-K64F and SAM3X8E)
and three OS libraries (Arduino, RIOT and NuttX). We now
compare PERRY with SEmu [62] because SEmu also aims
to synthesize universal hardware models. We do not com-
pare PERRY with path exploration oriented methods includ-
ing Laelaps, P2IM, uEmu, and Fuzzware, because they only
generate firmware-specific models as discussed in §2.2.

Table 3 shows the evaluation results. Without manual
intervention, PERRY passes 49 (74.24%) unit tests, while
SEmu fails all of them. SEmu cannot infer hardware be-
haviors for clock configuration peripherals (RCC, MCG
and PMC) and the involved firmware samples cannot boot.
SEmu fails to infer such behaviors because they are not de-
scribed in the hardware manual. However, the driver source
code presents such behaviors and PERRY successfully cap-
tures them. PERRY fails to pass 17 unit tests due to 6 wrong
or missing hardware behaviors. After fixing or adding these
behaviors with 6 LoC, PERRY achieves a passing rate of
100%. In comparison, SEmu achieves the same goal by man-
ually fixing and adding 16 rules.

Universality (to Answer RQ3). We demonstrate the uni-
versality of the hardware models by emulating various
firmware. Note that we reuse the models from the consis-
tency evaluation. The used firmware samples consist of two
parts: 10 real-world firmware samples from P2IM [15], and
19 shell firmware from two popular RTOS (LiteOS [25] and
Zephyr [58]). A piece of firmware is successfully emulated
if it can perform expected tasks defined by its code logic.

We collect the number of missing and wrong behaviors for

Table 4: PERRY model synthesis efficiency.

MCUs # Traces # HB Peripherals*

STM32F0xx 7,915,522 60 RCC, SPI, USART, DMA, I2C, TIM

STM32F1xx 927,325 52 RCC, SPI, USART, I2C, DMA, TIM,
ADC, EXTI, FLASH

STM32F4xx 231,159 52 PWR, RCC, RTC, SPI, USART, I2C,
ADC, RNG, TIM

STM32F7xx 1,331,346 64 PWR, RCC, SPI, USART, I2C, RNG,
TIM

STM32L0xx 4,820,407 64 DMA, I2C, RCC, RTC, SPI, TIM,
USART

FRDM-K22F 68,598 36 I2C, MCG, SPI, USART
FRDM-K64F 278,881 41 MCG, SPI, USART, I2C, PORT
FRDM-K82F 20,908 38 MCG, SPI, LPUART, I2C
FRDM-KL25Z 22,168 40 MCG, SPI, I2C, UART0, UART1/2

LPC51U68 38,340 28 ASYNC SYSCON, SPI, SYSCON,
USART, I2C

SAM4L-EK 4,491 16 HCACHE, HFLASH, SCIF, USART,
SPI

SAM4E Xplained Pro 6,203 36 PMC, UART, USART, PIO, SPI, TWI
SAM4S Xplained 6,257 41 PMC, UART, USART, PIO, SPI, TWI
SAM E70 Xplained 6,260 57 PMC, UART, USART, PIO, SPI
SAM V71 Xplained Ultra 6,193 55 PMC, UART, USART, PIO

SAM3X8E 2,796 32 PIO, PMC, SPI, TC, TWI, UART,
USART

* Peripherals with no hardware behaviors extracted are omitted.
* “HB” represents hardware behavior.

each hardware model during emulation and the number of
LoC to fix these models. The evaluation results are shown in
Table 5. Without manual intervention, PERRY successfully
emulates 20 (%68.97) firmware. After manually fixing prob-
lematic models (see scalability evaluation), we successfully
emulate all firmware.

To demonstrate that these models can actually help the
emulated firmware to perform meaningful tasks, we conduct
two case studies on the CNC and Drone firmware. Without
the synthesized hardware models, both firmware cannot even
boot. This demonstrates that hardware models generated by
PERRY are necessary and sufficient for firmware to perform
meaningful tasks.

The CNC firmware includes a G-Code interpreter that
controls the movement of the underlying hardware. The
firmware accepts G-Code inputs from USART. Our hardware
model directly connects the emulated USART hardware to
stdin of the host. Every time we enter G-Code into stdin,
the emulated USART is notified, certain status register bits
of the hardware are set, and the incoming data is stored in the
data register. Hence, the firmware can bypass checks of these
status bits, retrieve the data within the data register, parse it,
and perform predefined functionalities.

The Drone firmware reads sensor data through I2C, con-
trol the position of the drone accordingly, and report drone
state using USART. The emulated USART and I2C are con-
nected to separate pipes for data injection, and set certain sta-
tus register bits upon receiving incoming data. We inject ran-
dom inputs to the I2C as sensor data, and monitor the output
from the USART. As a result, the firmware can continuously
read sensor data and perform position control, and we can in-

Table 5: PERRY model universality.

MCUs Firmware # Miss.
Behaviors

Wrong
Behaviors

LoC
to Fix

STM32F0 series Zephyr-Shell 1 (✩) 1 (▲) 4LiteOS-Shell

STM32F1 series

Zephyr-Shell

0 0 0

LiteOS-Shell
Drone
Gateway
Reflow Oven
Robot
Soldering Iron

STM32F4 series

Zephyr-Shell

0 1 (▲) 1LiteOS-Shell
CNC
PLC

STM32F7 series Zephyr-Shell 0 1 (▲) 1LiteOS-Shell

STM32L0 series Zephyr-Shell 1 (✩) 0 3LiteOS-Shell

FRDM-K22F Zephyr-Shell 0 0 0

FRDM-K64F Zephyr-Shell 0 0 0Console

FRDM-K82F Zephyr-Shell 0 0 0

FRDM-KL25Z Zephyr-Shell 0 0 0

SAM4L-EK Zephyr-Shell 2 (✧) 0 4

SAM4E Xplained Pro Zephyr-Shell 2 (✧) 0 4

SAM4S Xplained Zephyr-Shell 2 (✧) 0 4

SAM E70 Xplained Zephyr-Shell 2 (✧) 0 4

SAM V71 Xplained Ultra Zephyr-Shell 2 (✧) 0 4

SAM3X8E Heat Press 0 0 0Steering Control

Note ✩: Non-trivial hardware functionalities. ✧: Implicit assumptions
on Hardware. ▲: In-context register operations.

spect the running state of the drone through USART output.

Scalability (to Answer RQ4). For encountered missing or
wrong behaviors, we manually extend or fix them according
to corresponding hardware manuals. By thoroughly inves-
tigating these failing cases, we summarize main causes as
listed below.

• Implicit Assumptions on Hardware: Drivers assume the
hardware always functions as expected. Therefore, drivers
may perform certain operations on the hardware without
checking every related registers. For example, drivers can
write a register and implicitly assume that another register
is updated automatically by hardware without waiting for
it. As a consequence, such implicit behaviors cannot be
captured by PERRY.
• In-Context Register Operations: A register might get

updated after a sequence of register operations, but the
UNDR pattern makes PERRY to falsely believe that only
the last register operation leads to the update.
• Non-trivial Hardware Functionalities: Some firmware

samples utilize non-trivial hardware functionalities (e.g.,

interrupt table relocation), which PERRY fails to synthe-
size behaviors.

We use the number of LoC to measure the required man-
ual efforts, and each line contains only one instruction. The
results are shown in Table 3 and Table 5. In total, we add
or modify 35 LoC to fix generated hardware models, and it
only takes at most 4 LoC to fix one model. Note that fixing
models for MCUs of the same family (e.g., STM32F4 and
STM32F7) even requires less manual efforts because their
peripherals are highly similar, resulting in similar fixes. Ad-
ditionally, as a benefit of our method, fixed models can be
used to emulate other firmware without further modification,
e.g., for MCUs involved in P2IM unit tests, PERRY achieves
a 100% success rate when emulating firmware samples run-
ning on them. Therefore, the scalability of PERRY is demon-
strated by the minimum manual efforts it requires.

6 Security Applications

As discussed in §3.1, bugs within drivers and applications
endanger the firmware. Therefore, we conduct three case
studies (CS) to demonstrate PERRY’s capability in catching
driver bugs, as well as reproducing and finding vulnerabili-
ties in firmware application code. Note that we reuse hard-
ware models from §5 without additional refinements.

6.1 Security Application in Drivers

(CS-I) Mining Specification Violation Bugs. PERRY infers
hardware behaviors from drivers when generating hardware
models, and we can compare these inferred hardware behav-
iors with hardware manuals to see whether the driver imple-
mentation follows the specification. We manually check the
hardware behaviors inferred from STM32Cube and MCUX-
presso drivers and identify two inconsistent bugs. We re-
ported the two bugs to corresponding vendors, and they have
acknowledged and fixed them. We demonstrate this process
using the bug found in the RCC driver for STM32F0 MCUs.
The hardware behavior is inferred from Listing 3, where the
hardware is supposed to set the HSI48RDY bit of the CR2 reg-
ister after the HSI48ON bit of CR2 is set by the driver, which,
if taken literally, is correct.

1 #define __HAL_RCC_HSI48_ENABLE() \
2 SET_BIT(RCC->CR2, RCC_CR2_HSI48ON)
3 __HAL_RCC_HSI48_ENABLE();
4 tickstart = HAL_GetTick();
5 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET) { ... }

Listing 3: STM32F0 RCC driver code snippet.

However, the macro RCC FLAG HSI48RDY is falsely de-
fined to check the HSI48ON bit. As a result, the inferred hard-
ware behavior indicates that it is the HSI48ON bit, instead of

the HSI48RDY bit, that should be set by the hardware after it
is set by the software, which conflicts with the specification.
This bug will cause the firmware to directly perform sub-
sequent operations without waiting the HSI14 oscillator to
stabilize (because the condition at line 5 is always evaluated
to false), which may lead to unexpected errors.

6.2 Security Application in Firmware Appli-
cations

(CS-II) Reproducing Firmware Vulnerabilities. In this
case study, we use PERRY to reproduce two vulnerabilities
(CVE-2022-1041 and CVE-2022-1042) in Zephyr’s Blue-
tooth protocol stack. The two vulnerabilities are located in
the BLE host [59, 60], and can be triggered by malformed
Host Controller Interface (HCI) packets during BLE mesh
provisioning. HCI packets are exchanged between BLE host
and controller over USB or UART.

Real BLE
Controller

Vulnerable
BLE Host

Emulated
Hardware

HCI Proxy

Host Machine

Pipe Socket

Figure 4: Reproducing BLE host vulnerabilities with
PERRY.

Figure 4 depicts our vulnerability reproducing method.
The vulnerable Zephyr BLE host firmware runs inside
QEMU, using the STM32F4xx hardware model generated
by PERRY. The emulated vulnerable BLE host exchanges
HCI packets over the emulated UART peripheral with in-
terrupt enabled, while the emulated UART is connected to a
HCI packet proxy using pipes, and the proxy communicates
with the BLE controller on the host machine though sockets.
The proxy forwards HCI packets between the emulated
BLE host and the real BLE controller as if they’re directly
communicating with each other. We inject malicious HCI
packets into the emulated HCI host through the proxy to
trigger the vulnerabilities. To validate the effectiveness
of the payload, we place break points on bug triggering
locations and inspect the program state using GDB. As a
result, we successfully reproduce both vulnerabilities.

(CS-III) Fuzzing RTOS for Vulnerabilities. In this case
study, we fuzz LiteOS by emulating it using PERRY-
generated hardware models. The overall fuzzing approach
is inspired by TriforceAFL [24]. We implement fuzz drivers
for the MQTT and LWM2M protocol stack of LiteOS, and
compile it against the STM32F769 Discovery MCU board.
Additionally, we implement various sanitizers (UBSAN [7],
KASAN [17], KMSAN [19] and KCSAN [18]) for LiteOS

Table 6: Results of a 6-hour fuzzing campaign on LiteOS.

Component Target Speed (#/sec) # Exec. # Path # Vuln.

MQTT

Deserialize ack 518.99 11,400,193 9 0
Deserialize connack 729.21 15,757,024 11 0
Deserialize connect 1233.25 26,547,383 35 1
Deserialize publish 634.81 13,632,707 14 1
Deserialize suback 517.32 11,380,177 13 1
Deserialize subscribe 969.45 20,505,021 12 1
Deserialize unsuback 469.20 10,261,209 10 0
Deserialize unsubscribe 537.79 11,910,801 11 1

LWM2M
coap parse message 331.79 7,331,274 4,112 3
lwm2m data parse(TLV) 271.10 6,261,404 6,000 0
lwm2m data parse(JSON) 10.84 1,638,116 3,160 2

to facilitate vulnerability detection. The target firmware is
emulated using the STM32F7xx hardware model generated
by PERRY. We also modify QEMU to collect coverage
using dynamic binary instrumentation (DBI), such that a
coverage-guided fuzzer (i.e., AFL [57]) can be integrated.

We develop 8 fuzz drivers for the MQTT protocol stack
and 3 fuzz drivers for the LWM2M protocol stack. Fuzz
drivers are compiled with KASAN and UBSAN enabled. We
run each fuzz driver for 6 hours and the statistics are listed
in Table 6. Through fuzzing, we totally uncover 10 vulner-
abilities. 7 are new vulnerabilities and 3 have been reported
by previous efforts [34], which were not fixed until we re-
ported them again. The discovered vulnerabilities are all
out-of-bound access vulnerabilities. We also reported newly
discovered vulnerabilities to relevant parties. Three of them
have been acknowledged and fixed with CVE-2021-41040
assigned. The remaining four vulnerabilities were directly
fixed in LiteOS, as they were linked to a ported third-party
library. Unfortunately, the developers of the library have not
responded to us as of the time of writing.

7 Threats to Validity

In assessing the validity of our study, several potential threats
emerge, particularly related to the limitations of PERRY in
inferring hardware behaviors from drivers and the manual
effort required to utilize PERRY effectively:

Limited Hardware Behaviors. Although PERRY enables
on-demand analysis to infer complicated hardware behav-
iors, the categories of hardware behaviors that PERRY can
infer from drivers are limited. For example, PERRY fails to
infer non-trivial hardware behaviors like IVT relocation, due
to their inconspicuous characteristics in drivers. However,
these behaviors can be implemented based on the generated
hardware models with little manual efforts.

Manual Efforts. Although PERRY substantially automates
the process of synthesizing hardware models, it still demands
manual involvement in three specific areas. Initially, an an-
alyst must prepare the relevant hardware metadata for each
driver library and utilize the provided compiler-wrapper to

compile the library into LLVM bitcode. Secondly, the gen-
erated hardware models must be integrated into an emula-
tor, which necessitates altering the emulator’s build script.
Lastly, despite these tasks being minimal, it is incumbent
upon the analyst to manually correct any incorrect or missing
hardware behaviors in the generated model.

8 Related Work

Firmware Rehosting and Analysis. Firmware can be ana-
lyzed statically to find bugs [10, 22, 42, 48], thus eliminating
the requirement for firmware rehosting techniques. To take
advantage of dynamic analysis techniques, efforts have been
made to rehost firmware. Hardware-oriented approaches as-
sume the presence of actual physical devices and can be di-
vided into two categories: hardware-in-the-loop and record-
and-replay. The first kind of approaches [9,31,56] only emu-
late CPUs and forward peripheral accesses to actual devices.
The second kind of approaches [20, 49] record peripheral
accesses during firmware executions and replay them when
emulating firmware. The dependency on real devices has
limited the scalability of these methods.

Table 7: Hardware-free MCU rehosting techniques.

Study Input
Model Genera

tio
n

Faith
ful Model

RQ2.M
odel Consis

ten
cy

Firm
ware-

independent

Exec.
Low-Level Code

Full Syste
m

HALucinator [8] ✗ ✗ ✗ ✓
BaseSAFE [39] ✗ ✗ ✗ ✗
Para-rehosting [34] ✗ ✗ ✗ ✓

P2IM [15] Firmware ✓ ✗ ✗ ✓ ✓
Laelaps [5] Firmware ✓ ✗ ✗ ✓ ✓
uEmu [61] Firmware ✓ ✗ ✗ ✓ ✓
Fuzzware [44] Firmware ✓ ✗ ✗ ✓ ✓

SEmu [62] Manual ✓ ✓ ✗ ✓ ✓ ✓
PERRY Driver ✓ ✓ ✓ ✓ ✓ ✓

Firmware-oriented approaches address this limitation by
providing different virtual execution environments for differ-
ent firmware, and can be performed at either register-level or
function-level as listed in Table 7. Function-level approaches
replace certain firmware functions to avoid hardware inter-
actions [6, 8, 27, 29, 34, 39]. Register-level approaches in-
fer how peripherals respond to register accesses, and are de-
signed to explore firmware paths instead of faithfully em-
ulating peripheral hardware [5, 15, 28, 37, 40, 44, 61]. These
methods generate firmware-specific hardware models, which
suffer from low universality and low fidelity. Function-level
and register-level approaches can be combined [21,23,43] to
emulate complex firmware like TrustZone OS.

A concurrent work [62] aims to mitigate the above limita-
tions by generating hardware models with high fidelity un-
der the guidance of hardware specifications. This method

involves a considerable amount of manual labor, while our
work is more automated.

Belief-based Software Analysis. Belief analysis [13] is a
technique to analyze a program’s assumptions on certain pro-
gram properties, and has been successfully applied to dis-
cover bugs [3,13] and infer specifications for programs [32].
Unlike these approaches, our work extend belief analysis to
infer hardware models instead of software properties.

9 Conclusion

In this paper, we propose PERRY, a system that synthesizes
faithful and extendable MCU peripheral models from
peripheral drivers. Through a comprehensive evaluation,
we demonstrate the efficiency, consistency, universality, and
scalability of PERRY in synthesizing hardware models. With
a 74.24% unit test passing rate, PERRY efficiently infers
hardware behaviors and enables high-fidelity emulation of
various firmware, while also allowing for easy extension
with minimal manual efforts. Through our case studies, we
showcase the security applications of PERRY in reproducing
firmware vulnerabilities, detecting specification-violation
bugs in drivers and fuzzing RTOS for new vulnerabilities.
These results highlight the potential of PERRY in enhancing
security-oriented tasks of IoT firmware analysis.

Acknowledgments

We thank the shepherd and the anonymous reviewers for
their valuable suggestions and comments. This research was
supported in part by National Natural Science Foundation
of China Grant No. 62232004, by US National Science
Foundation (NSF) Awards 1931871 and 2325451, by Jiangsu
Provincial Key R&D Programs Grant Nos. BE2021729,
BE2022680, and BE2022065-5, Jiangsu Provincial Key
Laboratory of Network and Information Security Grant No.
BM2003201, Key Laboratory of Computer Network and
Information Integration of Ministry of Education of China
Grant No. 93K-9, and Collaborative Innovation Center of
Novel Software Technology and Industrialization. Any opin-
ions, findings, conclusions, and recommendations in this pa-
per are those of the authors and do not necessarily reflect the
views of the funding agencies.

References

[1] Arm, “System view description,” 2022. [Online].
Available: https://arm-software.github.io/CMSIS 5/S
VD/html/index.html

[2] F. Bellard, “QEMU, a fast and portable dynamic trans-
lator,” in Proceedings of the 2005 USENIX Annual
Technical Conference (USENIX ATC), 2005.

[3] F. Brown, A. Nötzli, and D. Engler, “How to build
static checking systems using orders of magnitude less
code,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

[4] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unas-
sisted and automatic generation of high-coverage tests
for complex systems programs,” in Proceedings of the
8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2008.

[5] C. Cao, L. Guan, J. Ming, and P. Liu, “Device-agnostic
firmware execution is possible: A concolic execution
approach for peripheral emulation,” in Proceedings of
the 36th Annual Computer Security Applications Con-
ference (ACSAC), 2020.

[6] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “To-
wards automated dynamic analysis for linux-based em-
bedded firmware,” in Proceedings of the 23rd Annual
Network and Distributed System Security Symposium
(NDSS), 2016.

[7] Clang, “Undefined Behavior Sanitizer documentation,”
2023. [Online]. Available: https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html

[8] A. A. Clements, E. Gustafson, T. Scharnowski,
P. Grosen, D. Fritz, C. Kruegel, G. Vigna, S. Bagchi,
and M. Payer, “HALucinator: Firmware re-hosting
through abstraction layer emulation,” in Proceedings of
the 29th USENIX Security Symposium (USENIX Secu-
rity), 2020.

[9] N. Corteggiani, G. Camurati, and A. Francillon, “In-
ception: System-Wide security testing of Real-World
embedded systems software,” in Proceedings of the
27th USENIX Security Symposium (USENIX Security),
2018.

[10] D. Davidson, B. Moench, T. Ristenpart, and S. Jha,
“FIE on firmware: Finding vulnerabilities in embedded
systems using symbolic execution,” in Proceedings of
the 22nd USENIX Security Symposium (USENIX Secu-
rity), 2013.

[11] L. de Moura and N. Bjørner, “Z3: An efficient smt
solver,” in Proceedings of the 14th International Con-
ference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2008.

[12] R. Electronics, “Flexible software package,” 2023.
[Online]. Available: https://github.com/renesas/fsp

[13] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf, “Bugs as deviant behavior: a general ap-
proach to inferring errors in systems code,” in Proceed-
ings of the 18th ACM Symposium on Operating Systems
Principles (SOSP), 2001.

https://arm-software.github.io/CMSIS_5/SVD/html/index.html
https://arm-software.github.io/CMSIS_5/SVD/html/index.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/renesas/fsp

[14] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov,
B. Dolan-Gavitt, M. Egele, A. Francillon, L. Lu,
N. Gregory, D. Balzarotti, and W. Robertson, “Sok: En-
abling security analyses of embedded systems via re-
hosting,” in Proceedings of the 16th ACM Asia Confer-
ence on Computer and Communications Security (Asi-
aCCS), 2021.

[15] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and
hardware-independent firmware testing via automatic
peripheral interface modeling,” in Proceedings of the
29th USENIX Security Symposium (USENIX Security),
2020.

[16] D. Giese, “Having fun with iot: Reverse engineering
and hacking of xiaomi iot devices,” 2018. [Online].
Available: https://dontvacuum.me/talks/DEFCON26
/DEFCON26-Having fun with IoT-Xiaomi.pdf

[17] Google, “Kernel address sanitizer,” 2023. [Online].
Available: https://github.com/google/kernel-sanitizers

[18] ——, “Kernel concurrency sanitizer,” 2023. [Online].
Available: https://github.com/google/kernel-sanitizers

[19] ——, “Kernel memory sanitizer,” 2023. [Online].
Available: https://github.com/google/kernel-sanitizers

[20] E. Gustafson, M. Muench, C. Spensky, N. Redini,
A. Machiry, Y. Fratantonio, D. Balzarotti, A. Francil-
lon, Y. R. Choe, C. Kruegel, and G. Vigna, “Toward
the analysis of embedded firmware through automated
re-hosting,” in Proceedings of the 22nd International
Symposium on Research in Attacks, Intrusions and De-
fenses (RAID), 2019.

[21] L. Harrison, H. Vijayakumar, R. Padhye, K. Sen, and
M. Grace, “PARTEMU: Enabling dynamic analysis of
Real-World TrustZone software using emulation,” in
Proceedings of the 29th USENIX Security Symposium
(USENIX Security), 2020.

[22] G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and
K. R. B. Butler, “FirmUSB: Vetting USB device
firmware using domain informed symbolic execution,”
in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS),
2017.

[23] G. Hernandez, M. Muench, D. Maier, A. Milburn,
S. Park, T. Scharnowski, T. Tucker, P. Traynor, and
K. R. B. Butler, “Firmwire: Transparent dynamic anal-
ysis for cellular baseband firmware,” in Proceedings of
the 29th Annual Network and Distributed System Secu-
rity Symposium (NDSS), 2022.

[24] J. Hertz and T. Newsham, “Triforceafl,” 2017. [Online].
Available: https://github.com/nccgroup/TriforceAFL

[25] Huawei, “Huawei LiteOS,” 2023. [Online]. Available:
https://gitee.com/LiteOS/LiteOS

[26] T. Instruments, “TI MCU+ SDK,” 2023. [Online].
Available: https://github.com/TexasInstruments/mcup
sdk-core

[27] M. Jiang, L. Ma, Y. Zhou, Q. Liu, C. Zhang, Z. Wang,
X. Luo, L. Wu, and K. Ren, “ECMO: peripheral trans-
plantation to rehost embedded linux kernels,” in Pro-
ceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2021.

[28] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Check-
oway, S. Savage, and K. Levchenko, “Jetset: Tar-
geted firmware rehosting for embedded systems,” in
Proceedings of the 30th USENIX Security Symposium
(USENIX Security), 2021.

[29] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and
Y. Kim, “FirmAE: Towards large-scale emulation of iot
firmware for dynamic analysis,” in In Proceedings of
the 36th Annual Computer Security Applications Con-
ference (ACSAC), 2020.

[30] D. Komaromy and L. Szabo, “How to tame your uni-
corn - Exploring and exploiting zero-click remote inter-
faces of modern huawei smartphones,” in Proceedings
of the 2021 BlackHat USA (BHUSA), 2021.

[31] K. Koscher, T. Kohno, and D. Molnar, “SURRO-
GATES: Enabling Near-Real-Time dynamic analy-
ses of embedded systems,” in Proceedings of the
9th USENIX Workshop on Offensive Technologies
(WOOT), 2015.

[32] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. En-
gler, “From uncertainty to belief: Inferring the specifi-
cation within,” in Proceedings of the 7th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI), 2006.

[33] C. Lattner and V. Adve, “LLVM: A compilation frame-
work for lifelong program analysis and transforma-
tion,” in Proceedings of the 2004 International Sym-
posium on Code Generation and Optimization (CGO),
2004.

[34] W. Li, L. Guan, J. Lin, J. Shi, and F. Li, “From library
portability to para-rehosting: Natively executing open-
source microcontroller oss on commodity hardware,” in
Proceedings of the 28th Network and Distributed Sys-
tem Security Symposium (NDSS), 2021.

[35] W. Li, J. Shi, F. Li, J. Lin, W. Wang, and L. Guan,
“µAFL: non-intrusive feedback-driven fuzzing for mi-
crocontroller firmware,” in Proceedings of the 44th
International Conference on Software Engineering
(ICSE), 2022.

https://dontvacuum.me/talks/DEFCON26/DEFCON26-Having_fun_with_IoT-Xiaomi.pdf
https://dontvacuum.me/talks/DEFCON26/DEFCON26-Having_fun_with_IoT-Xiaomi.pdf
https://github.com/google/kernel-sanitizers
https://github.com/google/kernel-sanitizers
https://github.com/google/kernel-sanitizers
https://github.com/nccgroup/TriforceAFL
https://gitee.com/LiteOS/LiteOS
https://github.com/TexasInstruments/mcupsdk-core
https://github.com/TexasInstruments/mcupsdk-core

[36] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu, “Se-
curity vulnerabilities of internet of things: A case study
of the smart plug system,” IEEE Internet of Things
Journal (IoT-J), vol. 4, no. 6, pp. 1899–1909, 2017.

[37] Q. Liu, C. Zhang, L. Ma, M. Jiang, Y. Zhou, L. Wu,
W. Shen, X. Luo, Y. Liu, and K. Ren, “Firmguide:
Boosting the capability of rehosting embedded linux
kernels through model-guided kernel execution,” in
Proceedings of the 36th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
2021.

[38] K. Lu and H. Hu, “Where does it go?: Refining
indirect-call targets with multi-layer type analysis,” in
Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2019.

[39] D. Maier, L. Seidel, and S. Park, “BaseSAFE: baseband
sanitized fuzzing through emulation,” in Proceedings
of the 13th ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec), 2020.

[40] A. Mera, B. Feng, L. Lu, and E. Kirda, “DICE: Au-
tomatic emulation of dma input channels for dynamic
firmware analysis,” in Proceedings of the 42nd IEEE
Symposium on Security and Privacy (S&P), 2020.

[41] NXP, “MCUXpresso SDK Builder,” 2023. [Online].
Available: https://mcuxpresso.nxp.com/en/welcome

[42] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Con-
tinella, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“KARONTE: Detecting insecure multi-binary interac-
tions in embedded firmware,” in In Proceedings of the
41st IEEE Symposium on Security and Privacy (S&P),
2020.

[43] J. Ruge, J. Classen, F. Gringoli, and M. Hollick,
“Frankenstein: Advanced wireless fuzzing to exploit
new bluetooth escalation targets,” in Proceedings of the
29th USENIX Security Symposium (USENIX Security),
2020.

[44] T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson,
M. Muench, G. Vigna, C. Kruegel, T. Holz, and
A. Abbasi, “Fuzzware: Using precise MMIO modeling
for effective firmware fuzzing,” in Proceedings of the
31st USENIX Security Symposium (USENIX Security),
2022.

[45] G. Semiconductor, “Gd32f4xx firmware library,” 2023.
[Online]. Available: https://www.gd32mcu.com/data/d
ocuments/toolSoftware/GD32F4xx Firmware Library
V3.1.0.7z

[46] N. Semiconductor, “Standalone drivers for peripherals
present in nordic socs,” 2023. [Online]. Available:
https://github.com/NordicSemiconductor/nrfx

[47] N. Semiconductors, “Mcuxpresso SDK,” 2023. [On-
line]. Available: https://github.com/nxp-mcuxpresso/
mcux-sdk

[48] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel,
and G. Vigna, “Firmalice - automatic detection of au-
thentication bypass vulnerabilities in binary firmware,”
in Proceedings of the 22nd Annual Network and Dis-
tributed System Security Symposium (NDSS), 2015.

[49] C. Spensky, A. Machiry, N. Redini, C. Unger, G. Fos-
ter, E. Blasband, H. Okhravi, C. Kruegel, and G. Vigna,
“Conware: Automated modeling of hardware periph-
erals,” in Proceedings of the 16th ACM Asia Confer-
ence on Computer and Communications Security (Asi-
aCCS), 2021.

[50] STMicroelectronics, “RM0385 reference manual,”
2018. [Online]. Available: https://www.st.com/resourc
e/en/reference manual/rm0385-stm32f75xxx-and-stm
32f74xxx-advanced-armbased-32bit-mcus-stmicroel
ectronics.pdf

[51] ——, “Stm32cubef7 MCU firmware package,” 2023.
[Online]. Available: https://github.com/STMicroelectr
onics/STM32CubeF7

[52] E. Systems, “Espressif iot development framework,”
2023. [Online]. Available: https://github.com/espressif
/esp-idf

[53] I. Technologies, “Psoc 6 peripheral driver library,”
2023. [Online]. Available: https://github.com/Infineo
n/psoc6pdl

[54] M. Technology, “Advanced software framework,”
2023. [Online]. Available: https://www.microchip.co
m/en-us/tools-resources/develop/libraries/advanced-s
oftware-framework

[55] N. Technology, “M460 series cmsis bsp,” 2023.
[Online]. Available: https://github.com/OpenNuvoton
/m460bsp

[56] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti,
“Avatar: A framework to support dynamic security
analysis of embedded systems’ firmwares,” in Proceed-
ings of the 21st Annual Network and Distributed Sys-
tem Security Symposium (NDSS), 2014.

[57] M. Zalewski, “American fuzzy lop,” 2018. [Online].
Available: https://lcamtuf.coredump.cx/afl/

[58] Zephyr, “Zephyr project,” 2023. [Online]. Available:
https://www.zephyrproject.org/

[59] Y. Zhang and Z. Lin, “When good becomes evil: Track-
ing bluetooth low energy devices via allowlist-based
side channel and its countermeasure,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2022.

https://mcuxpresso.nxp.com/en/welcome
https://www.gd32mcu.com/data/documents/toolSoftware/GD32F4xx_Firmware_Library_V3.1.0.7z
https://www.gd32mcu.com/data/documents/toolSoftware/GD32F4xx_Firmware_Library_V3.1.0.7z
https://www.gd32mcu.com/data/documents/toolSoftware/GD32F4xx_Firmware_Library_V3.1.0.7z
https://github.com/NordicSemiconductor/nrfx
https://github.com/nxp-mcuxpresso/mcux-sdk
https://github.com/nxp-mcuxpresso/mcux-sdk
https://www.st.com/resource/en/reference_manual/rm0385-stm32f75xxx-and-stm32f74xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0385-stm32f75xxx-and-stm32f74xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0385-stm32f75xxx-and-stm32f74xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0385-stm32f75xxx-and-stm32f74xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://github.com/STMicroelectronics/STM32CubeF7
https://github.com/STMicroelectronics/STM32CubeF7
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf
https://github.com/Infineon/psoc6pdl
https://github.com/Infineon/psoc6pdl
https://www.microchip.com/en-us/tools-resources/develop/libraries/advanced-software-framework
https://www.microchip.com/en-us/tools-resources/develop/libraries/advanced-software-framework
https://www.microchip.com/en-us/tools-resources/develop/libraries/advanced-software-framework
https://github.com/OpenNuvoton/m460bsp
https://github.com/OpenNuvoton/m460bsp
https://lcamtuf.coredump.cx/afl/
https://www.zephyrproject.org/

[60] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and
X. Fu, “Breaking secure pairing of bluetooth low en-
ergy using downgrade attacks,” in Proceedings of the
29th USENIX Security Symposium (USENIX Security),
2020.

[61] W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic
firmware emulation through invalidity-guided knowl-
edge inference,” in Proceedings of the 30th USENIX
Security Symposium (USENIX Security), 2021.

[62] W. Zhou, L. Zhang, L. Guan, P. Liu, and Y. Zhang,
“What your firmware tells you is not how you
should emulate it: A specification-guided approach for
firmware emulation,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2022.

A Write and Update Semantic Inference

A.1 Bit Value Variation-Based Write Seman-
tic Inference

1 #define __HAL_RCC_HSI14_ENABLE() (RCC->CR2 |= RCC_CR2_HSI14ON)
2 /* Update CR2 to Enable HSI14 */
3 __HAL_RCC_HSI14_ENABLE();
4 ...
5 /* Wait till HSI14RDY is set in CR2 */
6 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) == RESET) {
7 if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE) {
8 return HAL_TIMEOUT;
9 }}

Listing 4: STM32F0xx RCC driver code snippet.

To infer write semantics in UNDR beliefs, considering
all possible concrete values that can be written into RegA
is impractical. However, we have observed that UNDR be-
liefs typically involve bit-level granularity, where only spe-
cific bits, known as critical bits, are intended to be tog-
gled. For example, in Listing 4 at line 3, the critical bit
is HSI14ON. Leveraging this observation, we propose a bit
value variation-based method to identify critical bits and in-
fer write semantics. The approach compares the values of
each bit in the target register before and after the write oper-
ation. If a bit’s value changes after the write, we consider the
new value as the write semantic.

Formally, we define three states for bit values: MUST ONE,
MUST ZERO, and ANY. These states indicate whether a bit
must be 1, must be 0, or can have any value, respectively. To
analyze the bit values, we utilize the bit-blasting technique
to obtain symbolic expressions for each bit in both the
original register value and the written value. Then, using an
SMT solver, we determine the ranges of possible bit values
for each bit. We formulate queries to the SMT solver based
on the path constraints CS, asking whether a bit can be 1

(query Q1) or 0 (query Q0). The resulting bit state ST is
determined as follows:

ST =

MUST ONE, i f (Q0,Q1) = (unsat,sat)

MUST ZERO, i f (Q0,Q1) = (sat,unsat)

ANY,else

(5)

By diffing bit states after and before the write, critical bits
can be identified using the following function

f
(

ST i
b ,ST i

a

)
=
(

ST i
b ̸= ST i

a

)
∧
(

ST i
a ̸= ANY

)
(6)

where ST i
b and ST i

a denotes the bit status of the i-th bit before
and after the write. The concrete value v for each identified
critical bit b can be calculated with the eval function:

eval (MUST ONE) = 1,eval (MUST ZERO) = 0 (7)

For each identified critical bit b and its concrete value v
identified, we introduce a constraint BCb := (b = v). Since
the update semantics can be expressed as the access con-
straints C of the register read access, the hardware behavior
can be derived as:

BUNDR :=

(∧
b

BCb,C

)
(8)

A.2 Write-Update Dependency Resolution
In the example listed in Listing 5, the value bitMask is writ-
ten to the PRESETCTRLSET register, and the PRESETCTRL

register is expected to get updated to bitMask. However,
since bitMask is not constrained, the write and update se-
mantics cannot be inferred using previous methods.

1 /* set bit */
2 SYSCON->PRESETCTRLSET[regIndex] = bitMask;
3 /* wait until it reads 0b1 */
4 while (0u == (SYSCON->PRESETCTRL[regIndex] & bitMask)) {}

Listing 5: LPC51U68 SYSCON driver code snippet.

We observe that the expected update value for RegB is typ-
ically linearly related to the value written into RegA. To ad-
dress this, we propose synthesizing linear formulas that sat-
isfy these relationships. The approach involves establishing
a linear equation valu = A× valw +B, where valu represents
the expected value for RegB, valw represents the value written
into RegA, and A and B are constants to be determined. By
substituting RegB in the access constraints CB, we use a SMT
solver to find concrete values for A and B that ensure the con-
straints in CB are always true. In the given example, the sub-
stituted CB becomes (A × bitMask + B) & bitMask ̸=
0. With the determined values for A and B, we successfully
synthesize a linear formula between valu and valw, allowing
us to derive the hardware behavior as:

BUNDR := (RegA = valw,RegB = A× valw +B) (9)

	Introduction
	Background
	MCU-based Embedded Systems
	Automatic MCU Rehosting

	Problem and Motivating Example
	Threat Model and Problem Statement
	Motivating Example

	Perry Design
	Pre-Processing
	Trace Collection
	Context Setup
	Symbolic Execution for Trace Collection

	Model Inference
	Basic Software Beliefs Identification and Hardware Behaviors Transformation
	On-Demand Complex Software Beliefs Identification and Hardware Behaviors Transformation

	Model Synthesis

	Evaluation
	Experiment Setup and Methodology
	Experiment Results

	Security Applications
	Security Application in Drivers
	Security Application in Firmware Applications

	Threats to Validity
	Related Work
	Conclusion
	Write and Update Semantic Inference
	Bit Value Variation-Based Write Semantic Inference
	Write-Update Dependency Resolution

