
Turning Legacy IR Devices into Smart IoT
Devices

Chuta Sano1, Chao Gao1(&), Zupei Li1, Zhen Ling2, and Xinwen Fu3

1 University of Massachusetts Lowell, Lowell, MA 01854, USA
{schuta,cgao,zli1}@cs.uml.edu

2 Southeast University, Nanjing, China
zhenling@seu.edu.cn

3 University of Central Florida, Orlando, FL 32816, USA
xinwenfu@cs.ucf.edu

Abstract. In this paper, we introduce a low-cost setup to convert an infrared
(IR) controllable device to a smart IoT device. We design and implement a
circuit board containing an IR sensor and multiple IR LEDs in parallel that
transmit up to around seventeen meters. The board has an interface that can be
connected to a Raspberry Pi and other similar devices. Our IR signal learning
tool can record IR signals of an IR remote while our IR replay tool can replay
the recorded signals to control the corresponding IR device. Therefore, a
smartphone can be used to remotely control IR devices through an MQTT
broker on a cloud server since the Raspberry Pi can be connected to the cloud.
We also introduce the security implications of infrared communication using our
setup and demonstrate attack scenarios. For example, a drone armed with our
device can remotely turn off a TV - https://youtu.be/rPbzPbWrbf8 or http://v.
youku.com/v_show/id_XMzQ0Njc5MzM3Ng.

Keywords: Internet of Things � Infrared � Smart home � Drone

1 Introduction

The Internet of Things (IoT) is a world-wide network of uniquely addressable inter-
connected objects [1, 2]. Many household devices including TVs, fans, air conditioners
and toys have IR receivers and are controlled through IR remote. We may want to
connect these legacy IR devices to the Internet and control them remotely while
maintaining an acceptable cost level.

In this paper, we aim to design a cheap bridge between IR devices and Internet. In
other words, we want to implement a smart IR remote with the Internet capability. To
this end, we design a custom IR signal recording and replay circuit board, which can be
connected to a Raspberry Pi and similar low-cost single board computers. For example,
the new Raspberry Pi Zero W with the WiFi capability costs only $10 dollars. Without
loss of generality, we will use the popular Raspberry Pi as an example in this paper to
demonstrate how our IR board is used. We implement an IR recording tool that can
record IR signals from an IR remote of any IR device. Our IR replay tool can replay the
signal and control the IR device. Therefore, the Raspberry Pi can be connected to the

© Springer International Publishing AG, part of Springer Nature 2018
S. Chellappan et al. (Eds.): WASA 2018, LNCS 10874, pp. 412–424, 2018.
https://doi.org/10.1007/978-3-319-94268-1_34

https://youtu.be/rPbzPbWrbf8
http://v.youku.com/v_show/id_XMzQ0Njc5MzM3Ng
http://v.youku.com/v_show/id_XMzQ0Njc5MzM3Ng
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94268-1_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94268-1_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94268-1_34&domain=pdf

Internet and a smartphone can be used to remotely control the IR device through the
Raspberry Pi. The smartphone and Raspberry Pi can be interconnected with a IoT
broker on the cloud such as Amazon EC2.

The contributions of this paper are summarized as follows. We introduce a low-cost
and extendable model to transform IR remote controllable devices into smart IoT
devices. To the best of our knowledge, this work is the first to fully address IR
playback through both hardware and software. An IR transceiver module is made for
the Raspberry Pi along with software. We also introduce the security implications of
infrared communication using our setup and demonstrate attack scenarios. For exam-
ple, we demonstrate that a remote-controlled drone armed with our device can turn
off/on a TV. Please refer to the YouTube video https://youtu.be/rPbzPbWrbf8 or
YouKu video http://v.youku.com/v_show/id_XMzQ0Njc5MzM3Ng.

The rest of this paper is organized as follows. We introduce background knowledge
including infrared communications, Raspberry Pi and Message Queuing Telemetry
Transport (MQTT) in Sect. 2. The hardware and software of the IR board is elaborated
in Sect. 3. We discuss the security implications of the device in Sect. 4 and evaluate the
board in Sect. 5. Related work is introduced in Sect. 6 and we conclude the paper in
Sect. 7.

2 Background

2.1 Infrared Communications

Infrared communications start with the sender rapidly turning pulses into a series of
940 nm wavelength electromagnetic waves, usually via LEDs, which the receiver
decodes into bits based on a scheme. The sender modulates the pulses at usually
38 kHz and encodes the signal to reduce noise and jitter, such as from the sun, while
increasing accuracy of transmission.

Figure 1 shows the three well known forms of encoding a signal: pulse distance,
pulse length and bi-phase. In this subsection, encoder refers to the sender, decoder
refers to the receiver, “on” refers to the infrared source (e.g., an LED) being on, and
“off” refers to the infrared source being off.

The pulse distance encoding scheme takes a constant on-length and two different
off-lengths for a 1 and a 0. It encodes a binary 1 with an on for on-length microseconds
and then an off for off-length-1 ms and likewise, a binary 0 with an on for on-length
microseconds and then an off for off-length-0 ms. Note that the on duration is fixed for
both binary 1 and 0 and the off duration determines whether it is interpreted as a 1 or 0.

Fig. 1. IR signal encoding

Turning Legacy IR Devices into Smart IoT Devices 413

https://youtu.be/rPbzPbWrbf8
http://v.youku.com/v_show/id_XMzQ0Njc5MzM3Ng

The pulse length encoding scheme, similar to pulse distance, takes two different
on-lengths for a 1 and a 0 and an off-length; it encodes a binary 1 by a sequence of on
for on-length-1 ms then an off for off-length and likewise, a binary 0 with an on for
on-length-0 ms and then an off for off-length microseconds. In this case, the off
duration for both binary 1 and 0 is fixed and the on duration determines whether the
signal is detected as a 1 or a 0.

The bi-phase encoding scheme takes a timeslot, also known as time window, and
encodes a binary 1 by a sequence of on ! off and a binary 0 by a sequence of
off ! on. The timeslot determines how long each off and on would be; it is a constant
that must be exchanged to both the sender and the receiver beforehand. Unfortunately,
bi-phase encoding may potentially cause decoding to be flipped; if the decoder does not
detect the start of a bi-phase and misses an odd multiple of timeslots, it can incorrectly
detect a binary 1 as a 0 and vice versa. Figure 2 is an example of bi-phase decoding
flip. The sequence 10110 is encoded but because the receiver misses the first on pulse,
it incorrectly decodes the sequence as 01001. Therefore, in practice, a known header is
implemented to guarantee that the decoder and encoder are in sync, for example with
the RC5 protocol.

Many manufacturers follow a variation of the RC5 or the NEC protocols, which are
both modulated at 38 kHz. The RC5 protocol uses the bi-phase encoding scheme with
the time slot being 1.78 ms and consists of a 2-bit header “11”, an alternating bit, 5
address bits, and 6 command bits. The alternating bit alternates on retransmission
within a button press, for example if a button is continuously pressed [3]. RC5 is most
commonly used by American and European manufactured audio and video equipment
such as speakers.

The NEC protocol uses the pulse distance encoding scheme with its on-length
being 562.5 ms, the off-length for 0 being 1687.5 ms, and the off-length for 1 being
562.5 ms. The NEC protocol starts with a header of 9 ms on and 4.5 ms off. Then, it
sends 8 address bits followed by its inverted form and then 8 data bits followed by its
inverted form for a total of 32 bits. For example, the full body of a command with an
address of 01001000 and data of 00000001 will be 01001000, 10110111 (inverted
address), 00000001, 11111110 (inverted data). Finally, it sends an additional 562.5 ms
of on as a footer. In cases of a repeat, for example when the volume button is con-
tinuously pressed, it waits for approximately 40 ms, sends a 9 ms on, a 2.25 ms off,
and finally a 562.5 ms on [4].

Fig. 2. Bi-phase decoding flip

414 C. Sano et al.

A problem with emulating infrared communications on an OS like Linux is that the
protocols are sensitive to time, and using the system clock as a form of time tracking is
not necessarily precise enough. Furthermore, since processes share time with other
processes, the infrared communication process cannot run accurately enough.

2.2 Raspberry Pi and PiGPIO Library

Raspberry Pi is a lightweight computer that runs on an ARM CPU. Although various
OSes are compatible with Raspberry Pi, in this paper, all Raspberry Pis use Raspbian,
which is a Debian-based Linux OS. In this work, Raspberry Pi 2 and 3 were used, but
below we establish common features between other models to emphasize the point that
any Raspberry Pi and other similar devices can be used.

The PiGPIO library is a GPIO interface written in C that can handle time sensitive
GPIO tasks by running a helper daemon. Its primary use in this project was to gen-
erated time accurate pulse waves. Using traditional file I/O methods to send pulses was
not precise enough due to various delays introduced by the overhead (e.g., I/O and
time-sharing with other processes).

2.3 MQTT

Message Queue Telemetry Transport (MQTT) is a popular protocol to implement IoT
communications due to its lightweight and simple nature. MQTT is a topic-based
publish/subscribe messaging system. A topic is a unique string that serves as the
identifier for a type of message. A publisher is any client that sends messages, which
contain the topic and the payload, whereas a subscriber is any client that listens for
incoming messages from some topic. A client or node is any system that connects to a
broker and publishes and/or subscribes to topics.

Mosquitto [5] is an open source implementation of MQTT 3.1 including MQTT
over TLS. Mosquitto provides a broker executable along with publish and subscription
tools. Paho-mqtt is a library for MQTT that provides APIs to subscribe and publish to
an MQTT broker.

3 IR Transceiver and Smart IR Devices

In this section, we first introduce the hardware and software of our long-range IR
transceiver. We then briefly discuss how to convert legacy IR devices into smarts one
with our IR transceiver so that we can control it from the Internet anywhere.

3.1 Hardware

Figure 3 illustrates the schematic of our IR transceiver board, Fig. 4 shows the PCB
design and Table 1 lists its parts. A typical usage setup will consist of a Raspberry Pi
and a transceiver module. The transceiver uses four GPIO interface to connect the
Raspberry Pi. It receives power from two GPIO pins, a 5 V pin, and a ground pin from
the Raspberry Pi. The sender GPIO pin (J-1) receives signals from the Raspberry Pi to

Turning Legacy IR Devices into Smart IoT Devices 415

turning on and off the LEDs on and off respectively and the timing is controlled by the
Raspberry Pi. The receiver pin (J-2) of the transceiver connects to the Raspberry Pi
which records the signals.

The transmitter portion of the transceiver has three important improvements in
design compared with related work [6]. First, PNP (Q1) transistors are used to pull a
5 V power pin instead of directly drawing from the GPIO pin which only offers 3.3 V
power. This increases the intensity of the light, leading to higher range of IR trans-
mission. Second, power supply is routed through a 220 uF capacitor (C2) and a 0.1 uF
capacitor (C1). Because the infrared protocols are fired in short bursts, the 220 uF
capacitor can store charge while the LED is off to increase stability in cases where the
Raspberry Pi fails to transmit steady current, and the 0.1 uF capacitor removes small
electric noise. Finally, four IR LEDs (D1–D4) are placed in parallel to maximize
coverage. the two outer LEDs are wide and short-ranged, whereas the two inner LEDs
are narrow and long-ranged. The GPIO command is passed through the PNP transistor
to each NPN transistor (Q2–Q5), which draws power from the 5 V pin in parallel. This
design allows a range of approximately 10.0 m compared to a trivial GPIO-resistor-
LED design which reaches approximately 2.0 m.

Fig. 3. Schematic of the IR transceiver board

Table 1. Parts list

ID on PCB design Part name

C1 Ceramic 0.1 uF capacitor (COM-08375)
C2 220 uF capacitor with 5 V + rating
D1, D3 Wide IR LED (IR333C/H0/L10)
D2, D4 Narrow IR LED (IR333-A)
Q1 PNP transistor (PN2907)
Q2, Q3, Q4, Q5 NPN transistor (PN2222)
TSSP58038 38 K IR receiver module
R1 1 KX 1/4 W 5% resistor

416 C. Sano et al.

The receiver module uses an integrated 38 kHz module of 940 nm peak wavelength,
which can automatically filter out infrared light that is not modulated at 38 kHz. This
decision is made for higher stability and distance compared to a generic light sensor and
is justified because consumer IR protocols mostly use 38 kHz modulation [7].

3.2 Software

Separate software to interface with the sender and the receiver is designed along with a
lightweight library that abstractifies much of the low-level intricacies in infrared
communication.

The receiver software, written in C++, records the durations of low and high inputs
from the receiver and records them into a raw format consisting of positive numbers
representing the duration in microseconds to turn on the LED and negative numbers
representing the duration in microseconds to turn off the LED. A user can associate a
name to a recording. The recording is saved to “ircodes.txt” by default but can be
optionally specified in the receiver software’s first argument. The saved recording
consists of a text file with two lines; the first line contains “name: <name>” where
<name> refers to the chosen name in the prompt from the receiver. The second line
consists of a list of integers delimited by space. A positive integer refers to turning on
the LED for that many microseconds, and a negative integer refers to turning off the
LED for that many microseconds. Additional recordings can be concatenated into the
same file.

The sender software uses the PiGPIO library for nanosecond level accuracy in
GPIO control, which is necessary to correctly replay signals. The software takes the
name of the command as the first argument, matches it to the line reading “name:
<name>” and as described previously, replays the list of numbers accordingly. The
sender software attempts to read from “ircodes.txt” by default but the file name can be
optionally specified in the second argument.

We have also written an extensive C++ library that abstractifies the sending of IR
signals using our long-range IR transceiver. The sender library implements the pre-
viously mentioned raw format scheme, pulse-distance, pulse-length, and bi-phase
encodings, and the NEC and RC5 protocols.

Fig. 4. PCB design of the IR transceiver board

Turning Legacy IR Devices into Smart IoT Devices 417

3.3 Smart IR Devices

Using the IR transceiver hardware and software, we can now connect our long-range IR
transceiver to a Raspberry Pi and control an IR device by recording and replaying its IR
signals. Since a Raspberry Pi has the Internet capability, we can connect the Raspberry
Pi to the Internet and control the IR device from anywhere.

We give an example setup of controlling an IR device from the Internet. We set up
a Mosquitto broker on an Amazon EC2 server so that we can publish messages through
the smartphone. A Raspberry Pi can subscribe to a topic and send the appropriate signal
upon receival of a message to the connected IR device.

4 Security Implications

In this section, we discuss the threats of the long-range IR transceiver that may be used
to attack IR controllable devices of various kinds.

4.1 Replay Attack

Similar devices (from the same brands) do not change their IR codes on a per device
basis, so following a simple replay procedure like introduced in the previous sections
can allow anyone to be able to control the same devices. TVBGone follows a similar
approach where the authors pre-record various brands of TV on/off toggle signals and
replay it. With TVBGone, replaying all its code take approximately 2 min, which is
certainly a very reasonable time frame to attack any TV [6]. Our long-range IR
transceiver is controlled by a Raspberry Pi and can be easily customized to attack any
IR controllable device.

4.2 Brute-Force Attack

The brute-force attack traverses all possible bits of a given protocol. For NEC, the set
of all possible commands are based on unique address and command bits, both being 8
bits long, for a total of 16 bits or 2 bytes. For RC5, there are 5 address bits and 6
command bits for a total of 11 bits of entropy. A simple ascending approach where the
address bit and command bit are considered one number and incremented was
implemented. For example, the brute-force algorithm for NEC would start at 0x0000
(address = 0x00 and command = 0x00), and then try 0x0001 (address = 0x00 and
command = 0x01), and so on until 0xFFFF. Generally, small items and products made
in Asia use the NEC protocol.

As an example of the brute-force attack, a remote-controlled light strip, “BINZET
5 M 50 LEDs 3AA Battery Operated Copper Wire String Light LED Fairy Light LED
Starry Light Cool White Festival Accent Light with Remote Control,” was attacked via
NEC brute-force, the objective being to turn on the light strip. The starting bits for the
address and command bits were set to 0x00 and 0x00 respectively; the light strip was
brute-force attacked within milliseconds, which was expected because the light strip’s
actual command was NEC with address 0x00 and command 0x02.

418 C. Sano et al.

The simple incremental approach that was implemented as mentioned above tra-
verses through all possible commands in one minute and twenty seconds per address.
Therefore, this approach is estimated to take up to five hours and forty minutes in the
worst case. However, in a fully optimized scenario, which can be implemented by
creating a kernel module that accepts queueing of pulses to send (meaning subsequent
commands are sent without delay), each command takes 67.5 ms to send, and there are
65536 distinct commands; the worst-case scenario can be shorted to just over one hour.
Due to lack of feedback (the automated system cannot detect whether the right code
was sent or not), the worst case must be considered over the average case.

An RC5 brute-force attack can be implemented the same way; the RC5 protocol,
which only has eleven varying bits and takes 24.9 ms to send, can be completely
brute-force attacked within fifty-one seconds.

An interesting observation was that the light strip accepted three command signals
within the address 0x00. The timings at which the incorrect commands were accepted
were varied and unpredictable; the reason for this unpredictable behavior remains
unclear and may be a hardware issue on the lightstrip.

4.3 Drone Attack

One difficulty of attacking IR devices is the attacking IR transceiver has to be close to
the target IR devices. To circumvent accessibility issues, we can put the Raspberry Pi
and our IR transceiver on a drone. The Raspberry Pi can be connected to the Internet so
that we can control the IR transceiver from anywhere.

Figure 5 shows an example of drone attack with a DJI Phantom 2. To minimize
weight and therefore maximize flight duration, the on-board camera was removed, and
a Raspberry Pi 2 with Anker PowerCore + Mini 3350 mAh were mounted. The battery
powers the Raspberry Pi 2. The drone flew outside a second-floor conference room.
This attack shows a method for attackers to partially circumvent the line of sight
requirement; if a line of sight exists from outside through a window, then a drone can
be leveraged to provide line of sight for the infrared setup.

Fig. 5. Drone attack against a TV through a window

Turning Legacy IR Devices into Smart IoT Devices 419

5 Evaluation

In this section we introduce the device setup in terms of hardware and software. We
estimate the cost of the entire setup, evaluate our hardware, software, as well as the
attacks on infrared communication, and then discuss limitations and potential
improvements to the system.

5.1 IR Device Setup

Figure 6 shows the smart IR device test setup. On the left side is an IR controlled LED
(wrapped around a tree-like artifact) with its IR receiver. On the right side, the IR
transceiver circuit board is connected to the Raspberry Pi Zero W [8] through GPIO
pins. The four connected pins from bottom to top on the IR transceiver are connected to
GPIO 22 (sender pin), GPIO 23 (receiver pin), a 5 V power pin, and a ground pin on
Raspberry Pi Zero W, respectively. The Raspberry Pi Zero W is connected to a
monitor, a power supply and a keyboard and mouse dongle through a USB OTG cable.

5.2 Cost

The total cost of the IR transceiver module is approximately $5.00 due to the variability
of PCB printing (for example building one module is very expensive due to PCB
printing). This experiment was done on the Raspberry Pi Zero W, which costs only
$10.00. The software is computationally trivial, more than enough for a Raspberry Pi
Zero W. Therefore, the total cost of the entire setup can be minimized to approximately
less than $15.00 with a Raspberry Pi Zero W.

Fig. 6. IR device test setup

420 C. Sano et al.

5.3 Range of Coverage

The range of the signals depends on multiple factors of the environment. High
reflectivity of walls, narrow space, and minimal external noise (e.g., minimizing lights
from sun or incandescent light bulbs) all increase the coverage and range of the signal.
A similar approach to Acoustic Theory can be taken to fully describe IR transmission
in rooms. Another huge factor is the sensitivity and noise tolerance of the IR sensor in
the device: a higher quality IR sensor (higher sensitivity and better noise filtering) will
also increase the range of the signal.

Table 2 illustrates the maximum range of the IR transceiver module for indoor and
outdoor use. The maximum range was determined by finding the highest distance
between our transceiver and the aforementioned lightstrip module such that a signal
was responsive ten out of ten times. As expected, the distance was maximized inside
where there are likely minimal noise. Moreover, windows can decrease the range,
mainly because of its reflectivity. Therefore, to perform a drone attack presented in
Sect. 4.3, the drone should be at most 13 m away from the target device, and in most
cases the drone can be very close (within 0.5 m) to the window, meaning target devices
that are at most 12.5 m away from windows are vulnerable. All three outside cases
show that the bounce of the light is very important for high distance. Furthermore, the
experiment showed that the receiver tends to be impacted by the sun more than the
sender; the sender side is not affected as much as shown by its maximum distance being
similar to the Outside, in shade case.

The software was mainly developed as a usability improvement to the Linux
Infrared Remote Control (LIRC) package. Although LIRC is a powerful tool, its
usability is lacking for simple signal replaying purposes, where attempting to learn a
signal not only failed at very noticeable rates but also took approximately thirty sec-
onds. The entire recording process of our software is very quick and does not fail.
Furthermore, the software implements various APIs to abstractify GPIO interaction,
simplifying any generic infrared communication needs.

Table 2. Maximum distance for given situations

Situation Maximum distance (m)

Inside, a building corridor 38.00
Inside, 13 � 13 m room with no pockets 17.70
Outside, through a window, receiver inside a room 13.00
Outside, receiver facing the sun 1.77
Outside, receiver facing away from the sun 4.26
Outside, in shade 5.83

Turning Legacy IR Devices into Smart IoT Devices 421

5.4 Security Analysis

Although it is clear that infrared communication has no security features and therefore
suffers from replay attacks and brute-force attacks, lack of accessibility and impact are
major problems that need to be addressed to make attacking infrared worthwhile.

Lack of accessibility comes from two factors: distance and blockage. Distance of
infrared light is limited because as previously described, there are too many sources of
potential interference, meaning infrared light becomes increasingly unstable with
longer range. Blockage comes from various sources that block infrared light, such as
walls. A possible workaround using drones was proposed.

The drone attack demonstrated that any IR devices with line of sight, for example
through windows, to target devices can be exploited. To a determined attacker, using a
similar attack alleviates some accessibility concerns. A potential issue with drone attack
is its motor noise may attract the attention of the target. A drone’s endurance (flight
time per charge) may also affect the effectiveness of the attack.

We now discuss the impact of the attack. Turning off someone’s TV is not as
significant of an issue as stealing someone’s credit card information. However, IR
controllable air conditioners, fans, and thermal control units, which are popular in
Asian countries, are certainly devices that need to be kept secure. Exploiting those
devices to arbitrarily change room temperatures can cause health risks but also a
non-trivial amount of monetary damage. Even controlling a TV can cause significant
harm if an attacker were to turn it on and maximize the volume at night.

5.5 Limitations

Because of the nature of the infrared spectrum, it behaves almost identical to the visible
spectrum. We essentially need a line of sight between the transceiver and the device to
perform any IR communication. We worked on addressing this issue by maximizing
both the distance and coverage of the IR module. At shorter distances, line of sight is
not necessary because the strong and spread signal will bounce off other surfaces and
reach the destination. However, this issue implies that multiple setups may be needed
depending on the layout of the house and where the legacy IR devices are located.

Another problem is that there is lack of feedback due to the one-way communi-
cation of infrared controlled devices. For example, users receive feedback from turning
on their TV by visually seeing the television turn on; they know to press the power
button again if they visually see that the TV does not turn on in a reasonable timeframe.
However, turning on the TV through Internet means that a user cannot get feedback
about the TV’s status unless the user is already within reasonable range from the TV,
which would make the added connectivity meaningless. Therefore, extra sensors, such
as camera or mic must be added, and those sensor inputs must be trained on a per
device basis to fully consider the legacy device as IoT. Nevertheless, in an indoor
scenario, interference is rare because of the high intensity of the emitted lights from the
proposed design, meaning an infrared equivalent of packet loss is rarely an issue
assuming the placement of the transceiver module is not too far, so users can assume
with high confidence that any sent signal will be received.

422 C. Sano et al.

6 Related Works

Overall, we were not able to find any published works that fully covered both the
hardware and software aspects of IR playback introduced in this paper.

The Linux Infrared Remote Control (LIRC) is a software package for Linux that
abstractifies much of the low-level details in infrared communication. It runs a helper
daemon on the kernel level, which allows precise timing when sending infrared
commands [9]. Although LIRC is very powerful, its recording process is very tedious,
taking close to a minute to learn simple commands and sometimes even failing. Our
software is a usability improvement to the LIRC.

TVBGone is a lightweight module that sends pre-trained TV on/off signals. It is
controlled by an IC chip, and precise timing is obtained through a ceramic resonator. Its
circuit design contained many clever tricks to increase stability and range in the
transmission, which this project heavily drew upon (see Sect. 2.1). Its purpose is to turn
off any TV, and it does so by hardcoding pre-recorded TV power toggle signals in the
IC chip [6]. Therefore, it is different in design from our work which aims to record and
playback any signal.

IrSlinger is a simple infrared sender which uses the PiGPIO daemon for precise
timing. It uses a PN2222 transistor to route 5 V current to the LED instead of using the
3.3 V from GPIO [10]. However, it is potentially unstable because of the possibly
unstable current from Raspberry Pi, and its coverage is not too large because it only
uses one LED. Furthermore, the software does not fully automate playback, and users
need to manually record and hardcode recorded values into a program.

Arduino Universal Remote autodetects NEC, RC5, and RC6 to handle for their
repeat codes. It can only record and play back one signal. In our work, repeat codes
were not handled at all because through testing we were not able to find any devices
that were not responsive to sending the same code.

IRRemberizer uses a IR photo transistor to record signals instead of a IR trans-
ceiver, which allows IRRememberizer to record modulations of 30 k to 60 kHz at the
cost of increased unreliability and therefore decreased range due to the photo resistor
more likely to be affected by interferences from external infrared sources [11]. In this
paper, a 38 kHz IR receiver module was used instead, which allowed higher stability
and range in the recording process.

7 Conclusion

In this paper, we introduce a cost-effective method to transform legacy IR controlled
devices into Internet connected smart IoT devices through a Raspberry Pi with an IR
transceiver module. The cost of the IR transceiver is around $5.00. Our IR transceiver
design achieves long-range coverage. We also introduce an extensive IR communi-
cation library to show security flaws in common IR protocols. A drone armed with our
device may pose severe threats against IR controllable devices of various kinds.

Turning Legacy IR Devices into Smart IoT Devices 423

Acknowledgments. This work was supported in part by US NSF grants 1461060, 1642124, and
1547428, by National Science Foundation of China under grants 61502100 and 61532013, by
Jiangsu Provincial Natural Science Foundation of China under Grant BK20150637, by Ant
Financial Research Fund. Any opinions, findings, conclusions, and recommendations in this
paper are those of the authors and do not necessarily reflect the views of the funding agencies.

References

1. Xu, G., Yu, W., Griffith, D., Golmie, N., Moulema, P.: Toward integrating distributed
energy resources and storage devices in smart grid. IEEE Internet Things J. 4, 192–204
(2017)

2. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on internet of things:
architecture, enabling technologies, security and privacy, and applications. IEEE Internet
Things J., Enabling Technologies (2017)

3. Altium Limited: Philips RC5 Infrared Transmission Protocol, 13 Sept 2017. http://techdocs.
altium.com/display/FPGA/Philips+RC5+Infrared+Transmission+Protocol

4. Altium Limited: NEC Infrared Transmission Protocol, 13 Sept 2017. http://techdocs.altium.
com/display/FPGA/NEC+Infrared+Transmission+Protocol

5. Mosquitto (2018). https://mosquitto.org/
6. Adafruit Industries: TVBGone, 4 Jan 2018. https://cdn-learn.adafruit.com/downloads/pdf/tv-

b-gone-kit.pdf
7. Gotschlich, M.: Remote Controls – Radio Frequency or Infrared White Paper, Infineon

Technologies AG (2010). https://www.infineon.com/dgdl/RF2ir+WhitePaper+V1.0.pdf?
fileId=db3a30432b57a660012b5c16272c2e81

8. Raspberry Pi Zero W (2018). https://www.raspberrypi.org/products/raspberry-pi-zero-w/
9. Christoph Bartelmus: Linux Infrared remote control (LIRC), 26 May 2016. http://www.lirc.

org/
10. Schwind, B.: Sending Infrared Commands From a Raspberry Pi Without LIRC, 29 May

2016. http://blog.bschwind.com/2016/05/29/sending-infrared-commands-from-a-raspberry-
pi-without-lirc/

11. Sensacell: IR Rememberizer- IR Remote Control Recorder/Player, 6 Aug 2014. https://
forum.allaboutcircuits.com/blog/ir-rememberizer-ir-remote-control-recorder-player.648/

424 C. Sano et al.

http://techdocs.altium.com/display/FPGA/Philips%2bRC5%2bInfrared%2bTransmission%2bProtocol
http://techdocs.altium.com/display/FPGA/Philips%2bRC5%2bInfrared%2bTransmission%2bProtocol
http://techdocs.altium.com/display/FPGA/NEC%2bInfrared%2bTransmission%2bProtocol
http://techdocs.altium.com/display/FPGA/NEC%2bInfrared%2bTransmission%2bProtocol
https://mosquitto.org/
https://cdn-learn.adafruit.com/downloads/pdf/tv-b-gone-kit.pdf
https://cdn-learn.adafruit.com/downloads/pdf/tv-b-gone-kit.pdf
https://www.infineon.com/dgdl/RF2ir%2bWhitePaper%2bV1.0.pdf%3ffileId%3ddb3a30432b57a660012b5c16272c2e81
https://www.infineon.com/dgdl/RF2ir%2bWhitePaper%2bV1.0.pdf%3ffileId%3ddb3a30432b57a660012b5c16272c2e81
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
http://www.lirc.org/
http://www.lirc.org/
http://blog.bschwind.com/2016/05/29/sending-infrared-commands-from-a-raspberry-pi-without-lirc/
http://blog.bschwind.com/2016/05/29/sending-infrared-commands-from-a-raspberry-pi-without-lirc/
https://forum.allaboutcircuits.com/blog/ir-rememberizer-ir-remote-control-recorder-player.648/
https://forum.allaboutcircuits.com/blog/ir-rememberizer-ir-remote-control-recorder-player.648/

