
A Comprehensive and Long-term Evaluation of Tor
V3 Onion Services

Chunmian Wang†, Junzhou Luo†, Zhen Ling†∗, Lan Luo†, Xinwen Fu‡
†School of Computer Science and Engineering, Southeast University

Email: {chunmianwang, jluo, zhenling}@seu.edu.cn, lanluo448@gmail.com
‡Department of Computer Science, University of Massachusetts Lowell, Lowell, MA, USA

Email: xinwen_fu@uml.edu

Abstract—The version 3 (V3) Tor onion service protocol deeply
hides onion service domain names to improve anonymity. Existing
onion service analysis methods cannot be used any more to
understand V3 onion services and the ecosystem such as benign
services, abuses and black markets. To understand the scale of
V3 onion services, we theoretically analyze the V3 onion service
mechanism and propose an accurate onion service size estimation
method, which is able to achieve an estimation deviation of 2.43%
on a large-scale emulated Tor network. To understand onion
website popularity, we build a system and collect more than two
years of data of public onion websites. We develop an onion
service popularity estimation algorithm using online rate and
access rate to rank the onion services. To reduce the noise from
the phishing websites, we cluster onion websites into groups based
on the content and structure. To our surprise, we only find 487
core websites out of the collected 45,889 public onion websites.
We further analyze the weighted popularity of each group using
yellow page data and discover that 35,331 phishing onion websites
spoof the 487 core websites.

I. INTRODUCTION

Tor is the most popular anonymous communication network.
In order to protect the anonymity of onion service providers,
researchers introduced an onion service mechanism [1] in 2003
and deployed version 2 (V2) of the onion service on the Tor
network in 2004. When an onion service is first started, it
generates an onion address, i.e., a domain name of an onion
service, which clients can use to access the service. A 6-
hop circuit established over 6 Tor nodes is used to achieve
two-way anonymous communication between the client and
the onion service. However, Version 2 of the onion service
protocol has many issues. For example, adversaries can harvest
onion addresses on the Tor network by deploying hidden
service directories (HSDirs) that are organized on a distributed
hash table (DHT). Therefore, Tor deprecates the V2 onion
service in 2021 [2] and completely migrates to version 3 (V3)
of the onion service. Although a new blinding protocol [3]
applied to the V3 onion services effectively keeps the onion
service addresses from being directly exposed to the HSDirs,
it causes the abuse of the onion services (e.g., botnet servers
[4], phishing websites [5] and illegal black markets [6]) to be
even hard to be discovered.

To understand the abuse issue, we scrutinize the designs and
implementation details of the V3 onion service protocol and
perform long-term and comprehensive analysis in an attempt

* Corresponding author: Prof. Zhen Ling of Southeast University, China.

to shed a light on the new V3 onion service on the Tor network.
First, we propose an accurate estimation method to estimate
the number of V3 onion services on the Tor network. In each
period, an onion service generates a specific blinded public
key, which is encapsulated in a descriptor and uploaded to
several HSDirs. Since a blinded public key can only be associ-
ated with an onion service in one day, the recorded number of
blinded public keys in such short period of time can be used to
estimate the number of V3 onion services. On the basis of this
observation, we deploy a HSDir on the Tor network to collect
descriptors uploaded by onion services and parse the blinded
public keys from the descriptors. After deriving the number of
blinded public keys collected by a HSDir, we leverage the po-
sition of the HSDir on the DHT to compute a capture probabil-
ity so as to estimate the number of blinded public keys and thus
learn the total number of onion services on the Tor network.

We classify onion services into public and private ones, and
analyze the public onion services that can be retrieved via
search engines. We design a system to collect public V3 onion
addresses and inspect their aliveness and access frequency.
We develop a novel popularity estimation algorithm of onion
services using their online time and access frequency in an
attempt to rank the onion services. Since most of the onion
services host Web services, we focus on the rank of onion
websites in this paper. We find that a large number of phishing
websites significantly affect the ranking results. To mitigate
this issue, we leverage a tree edit distance to measure the
similarity of Document Object Model (DOM) trees between
onion websites so as to cluster the websites into groups. We
select the most popular websites, defined as core websites,
within the website groups using weighted group popularity
and then identify the phishing sites in each group.

Our major contributions are summarized as follows.
• We are the first to propose an accurate Tor V3 onion

service size estimation method. We verify our method
using a large-scale emulated Tor network that includes
300,000 onion services and achieve an average estimation
deviation rate of 2.43% within one day. By deploying 10
HSDirs on the real Tor network, we discover that the
current onion service size is around 900,000.

• We design a system to collect public V3 onion services
and leverage our HSDirs to observe the behavior of the
onion services for more than two years. We analyze the
long-term data and develop an onion service popularity

IE
EE

 IN
FO

C
O

M
 2

02
3

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

29
05

7

Authorized licensed use limited to: Southeast University. Downloaded on November 27,2023 at 12:02:32 UTC from IEEE Xplore. Restrictions apply.

algorithm based on online rate and access rate to estimate
the onion website rank. Surprisingly, we discover that
only 487 out of 45,889 public onion websites are selected
as core websites via our approach. 5 out of the first 6 most
popular onion websites are black markets.

• We further explore the reason why we have such a small
size of core websites. We leverage the structure and
content of the onion websites to cluster these sites and
discover that 35,331 phishing onion websites imperson-
ating the 487 core websites. Most of the spoofed core
websites fall into the Finance category. Attackers may
try to make profits via so many phishing websites.

II. ONION SERVICE MECHANISM

In this section, we first present the latest version 3 of
Tor onion service mechanism and then introduce the key
building blocks of the mechanism in detail, including onion
service address generation, onion service publication, and
onion service connection establishment.

A. Overview of Tor onion service mechanism

Tor onion service mechanism refers to enabling users to
publish and access internet services anonymously, such as Web
and SSH. The onion service mechanism involves six types of
Tor nodes as follows:

• Tor Client. A Tor client is a Tor program installed on
the client side to provide a local Tor proxy that only
supports TCP applications. A client application (e.g., a
web browser) accesses Internet through the Tor client.

• Onion Service. An onion service supports various TCP
services such as Web service. The TCP services can be
deployed to provide their services via a Tor client.

• Introduction Point (IPO). An IPO is selected by an
onion service to act as a front-end reverse proxy of the
onion service so as to protect the real IP address of the
onion service from being exposed. Moreover, the IPO
receives the connection requests from the Tor client and
forwards them to the onion service.

• Rendezvous Point (RPO). A RPO is a Tor relay node
selected by the Tor client to concatenate the connections
from the onion service and the Tor client.

• Hidden Service Directory (HSDir). A HSDir is a
special type of Tor relay node on the Tor network. It
not only works as a normal Tor relay node to transmit
Tor data, but also receives and stores the information
of onion services (e.g., IPOs and public keys) and
responses the queries from Tor clients to allow them
to download the onion service information. In order to
locate a specific HSDir with an onion service address, all
HSDirs are organized via a distributed hash table (DHT).

• Authority. An Authority is an authoritative node
officially deployed by Tor. IP addresses of 9 Authorities
are hard-coded in the Tor program to allow users to
access the Tor network for the first time. They are
responsible for maintaining and storing all legitimate Tor
node information into a consensus file. Each Tor client

Client

Entry
MiddleExit

Entry Middle
RPO

EntryMiddle
IPO

ExitMiddleEntry

Entry

Middle

Exit

Entry

Middle

Exit

Onion service

DHT
. .
.

..
.

HSDir

Fig. 1: Onion service communication mechanism

and Tor node periodically downloads the consensus file
to derive all of the latest Tor node information.

Figure 1 shows the onion service communication process.
When a Tor onion service starts for the first time, it generates
a master identity public-private key pair and uses the public
key to compute the onion service address. ① The onion service
then randomly selects multiple relays as IPOs (the default is
3) and establishes a 3-hop circuit to each IPO. ② Once the
IPOs are selected, the onion service generates an onion service
descriptor that contains information of the IPOs. Finally, the
onion service uploads the descriptor to 8 responsible HSDirs
on the DHT. ③ When a Tor client accesses a target onion
service, it calculates the location of the responsible HSDirs on
the DHT using information such as onion address, and then
retrieves the latest descriptor of the onion service from the
responsible HSDirs. ④ The Tor client selects a Tor relay node
as the RPO, establishes a circuit to the RPO and generates a
rendezvous cookie as the authentication for the onion service.
⑤ After the client decrypts the descriptor to get the IPO, it
establishes a 3-hop circuit to the IPO and sends a request,
including the RPO information and rendezvous cookie, to the
onion service via the IPO. ⑥ When the onion service receives
the request, it establishes a 3-hop circuit to the RPO and uses
a rendezvous cookie to complete the authentication with the
RPO. ⑦ Then the RPO can concatenate the two circuits from
the client and the onion service. Finally, the Tor client can
communicate with the onion service via the 6-hop circuit.

B. Onion address generation

The V3 onion service address is generated using the master
identity public key of the onion service, the key checksum
and the version number. The master identity key of the onion
service is an asymmetric key generated by the ED25519
algorithm [7]. The V3 onion address is formed using Base32 to
encode the concatenated bytes of the public key of the master
identity key, the public key checksum and the version of the
protocol, and then appending a suffix string of “.onion” to
derive a 62 bytes string as shown in Equation (2).

onionv3 = Base32(Pk|Cs|V)|“.onion” (1)
where Pk is the public key of the master identity key, Cs is a
checksum of the Pk and V is the version of the protocol (i.e.,
3). The checksum is computed as follows:

Cs = SHA3-256(“.onion checksum”|Pk|V)[0 : 1] (2)

2
Authorized licensed use limited to: Southeast University. Downloaded on November 27,2023 at 12:02:32 UTC from IEEE Xplore. Restrictions apply.

The first two bytes of the SHA3-256 value is used to represent
the checksum.

C. Onion service publication

To publish the onion service descriptor, the onion service
first uses a consensus file to derive a DHT so as to look up
responsible HSDirs. The index of each HSDir on the DHT is
calculated by

I = H(“node-idx”|Pid|S|Np|T), (3)

where Pid is the identity public key of the HSDir, S is a shared
random value published in the consensus file, Np is the number
of time period and T is a time period. The shared random value
S is used to prevent attacks from predicting the location of
HSDirs on the DHT for publishing an onion service descriptor.
The shared random value is negotiated among Authorities and
published at 0:00 am in the consensus file. Moreover, the con-
sensus file contains two shared random values of the current
time period and the previous time period. The number of time
period Np is calculated using the Unix epoch and 12:00 UTC
is the start time of each time period, so that the first time period
starts at 12:00 UTC on January 1, 1970. The default time
period T is 1440 minutes, i.e., one day. The HSDirs are placed
on the DHT in terms of their indices, and the DHT space is
2256. Since the indices of the HSDirs changes in terms of
shared random value and the number of time period each day
as shown in Equation (3), the DHT should be theoretically re-
generated at 0:00 am in each time period as shown in Figure 2.

After deriving the latest DHT, the onion service calculates
the indices of its descriptors and maps them to the DHT so as
to select the responsible HSDirs for uploading the descriptor.
The indices of the descriptors can be calculated by

for r in 1 . . . R :

IDr = H(“store-at-idx”|Pb|r|T |Np),
(4)

where R ∈ [1, 16] (by default R is equal to 2), and Pb is
the blinded public key. The blinded public and private keys
are periodically generated by using Np and the onion service
identity public and private keys, respectively. When R uses
the default value 2, we can have two different indices of the
onion service descriptor, i.e., ID1 and ID2. Each ID can
be mapped on the DHT. Then the onion service selects 4
consecutive HSDirs on the DHT as the responsible HSDirs
whose indices immediately follow the ID. If a responsible
HSDir is already selected, the onion service can skip it and
select a following HSDir as the responsible HSDir. Upon
selecting the 8 responsible HSDirs, the onion service uploads
the descriptors to them and randomly picks the next uploading
time ranging from 60 to 120 minutes.

Once a HSDir receives the uploaded descriptors, it first
verifies the format of the descriptors and stores the descriptors.
The blinded public key included in the descriptor is used as
a hash table index that corresponds to the descriptor, so that
the HSDir can quickly look up the stored descriptor given the
blinded public key.

00:00

SRV1

12:00

TP1

00:00

SRV2

DHT3

Desc13

DHT0

Desc00

TPN = The Time Period N

 = Descriptor Rotation Time

SRVN = Shared Random Value in TPN

DHTN = Distributed Hash Table in TPN

Desc0N = First Descriptor in TPN

Desc1N = Second Descriptor in TPN

12:00

TP2

00:00

SRV3

12:00

TP3

00:00

SRV4

DHT1

Desc11

Desc01

DHT2

Desc12

Desc02

Fig. 2: DHT update process
D. Onion service access

Once a user obtains an onion service address via an out-of-
band way (e.g., a public Web forum), she can enter the onion
address in the browser that is configured to use the Tor client as
the local proxy. Then the Tor client constructs the DHT using
the current Np and the S in the consensus file, and calculates
the IDs using Equation (4) to look up the responsible HSDirs
of the onion service. The Tor client extracts the master identity
public key Pk in the onion address as shown in Equation (1),
and generates the blinded public key using Pk and Np. After-
wards, it randomly selects a responsible HSDir, and sends the
blinded public key to the HSDir so as to download the descrip-
tor. Note that the onion service selects the continuous indices
of 4 responsible HSDirs after each ID on the DHT, while the
client only downloads descriptors from the first 3 responsible
HSDirs for each ID. The rest two HSDirs are backup respon-
sible ones. Next, the client randomly selects a Tor relay node
as the RPO and then builds a 3-hop connection to the RPO.

After downloading the descriptor, the Tor client can derive
the IPOs of the onion service from the descriptor. Then the
Tor client randomly generates a 20-byte rend_cookie and
sends it to the onion service through the IPOs. The onion
service establishes a 3-hop connection with the RPO and sends
the rend_cookie to it for authentication purpose. Once the
RPO authenticates the connection, it concatenates the two
communication connections between the client and the onion
service in order to allow the Tor client and onion service to
anonymously communicate with each other.

III. METHODOLOGY

In this section, we first introduce the overview of our
analysis methods on the V3 onion services and then intro-
duce a theoretical method to estimate V3 onion service size
by analyzing the V3 onion service mechanism. Further, we
present a novel popularity algorithm to rank public V3 onion
services and derive the core websites on the Tor network.

A. Overview

Our objective is to achieve a comprehensive analysis of the
latest V3 onion services on the Tor network. To this end, we
first estimate the number of onion services. Since an onion
service generates a unique blinded public key in every day
and uploads it to HSDirs, we can deploy a HSDir on the
Tor network to receive the descriptors and then count the

3
Authorized licensed use limited to: Southeast University. Downloaded on November 27,2023 at 12:02:32 UTC from IEEE Xplore. Restrictions apply.

number of different blinded public keys. We leverage the
capture probability of the HSDir in terms of the location
of the HSDir on the DHT to estimate the total number of
onion services. Then we further analyze public onion services
that can be crawled via search engines. We propose an onion
service popularity algorithm to rank the public onion services
by their online time and access frequency. Since we discover
that a large number of phishing onion services that can affect
the popularity results, we leverage a tree edit distance to
measure the similarity of the DOM tree of any two websites,
and then cluster them into groups based on the similarity so as
to find out the phishing sites. Next, we leverage the popularity
of onion service addresses on well-known yellow pages to
compute the weighted popularity for each group. Finally, we
can reveal the core onion website group on the Tor network
using an empirical threshold.

B. V3 onion service size estimation

We deploy several HSDirs and then leverage the blinded
public keys collected by our controlled HSDirs in each time
period, i.e., one day, to evaluate the total number of V3 onion
services. Recall that a new blinded public key is generated
by an onion service in each time period and enveloped into
two descriptors that are uploaded to 8 HSDirs by default.
Therefore, we only have one day to use our deployed HSDirs
to collect the blinded public keys in the descriptors so as to
evaluate the total number of onion services. Since the DHTs
and the IDs of onion service descriptors can be changed
periodically, we should choose an appropriate evaluation time
period (ETP) in which the mapping relationship between the
descriptors and their responsible HSDirs cannot be changed so
as to estimate the number of V3 onion service in the ETP .
According to Equation (3) and Equation (4), we choose the
ETP ranging from 0:00 UTC to the next 0:00 UTC.

Without loss of generality, we first estimate the total number
of onion services using one controlled HSDir that resides on
one of two DHTs. Note that there are always two DHTs during
an ETP as shown in Figure 2. For simplicity, we illustrate
how to evaluate the onion service size using the old DHT
in an ETP. It is assumed that there are N HSDirs on the Tor
network. We denote the index of the ith HSDir on the DHT by
Ii (i ∈ [0, N − 1]) that is calculated in terms of Equation (3).
The interval between the ith and i− 1th HSDir is denoted by
Li, where Li = Ii−Ii−1. Recall that, if a descriptor ID falls
in the interval Li, the ith HSDir can receive the descriptor.
Then the probability that a descriptor ID falls in the interval
Li can be computed by

pi =
Li∑N−1

j=0 Lj

(5)

We define a capture probability that a HSDir receives a
new blinded public key in an ETP. Note that an onion service
generates two descriptors that contain the same blinded public
key and each descriptor is uploaded to 4 consecutive HSDirs
in terms of ID as shown in Figure 3. Let Bi be the event that
the ith HSDir collects an onion service descriptor. Discrete
random variables A1 and A2 indicate that the descriptor

ID1 and ID2 of the onion service fall in a range of the
DHT, respectively. a1 and a2 are the ranges of (Ii−4, Ii]
and (Ii−8, Ii−4] in which a descriptor ID falls, respectively,
and a3 indicates that the descriptor ID falls in a location
other than a1 and a2 (i.e., ID /∈ (Ii−8, Ii]) as shown in
Figure 4. According to law of total probability, the capture
probability P 1

i of the ith HSDir on the old DHT becomes
P 1
i = P (Bi) = P (A1 = a1)P (Bi|A1 = a1) + P (A1 =

a2)P (Bi|A1 = a2) + P (A1 = a3)P (Bi|A1 = a3). Law of
total probability is then used to compute three conditional
probabilities, i.e., P (Bi|A1 = a1), P (Bi|A1 = a2), and
P (Bi|A1 = a3). The capture probability becomes

P 1
i =

i∑
j=i−3

pj +

i−4∑
j=i−7

pj

i∑
j=i−7

pj

+(1−
i∑

j=i−7

pj)

i∑
j=i−3

pj (6)

Please refer to [8] for detailed derivation of Equation (6).
Then, the total estimated number of onion services on the

old DHT can be evaluated by

Ê1
i =

X1
i

P 1
i

, (7)

where X1
i is the number of distinct blinded public keys

received by the ith HSDir in an ETP.
Since an onion service maintains two different DHTs during

an ETP, we discuss how to evaluate the onion service size
using two DHTs. Denote distinct blinded public keys collected
in the latest DHT in an ETP as X2

i . Xi is the number of
distinct blinded public keys received by the ith HSDir on both
the old and the latest DHT. We have

Xi = X1
i +X2

i = Ê1
i ∗ P 1

i + Ê2
i ∗ P 2

i , (8)

where Ê2
i is the estimated onion service size using the latest

DHT and P 2
i is the capture probability that the ith HSDir

obtains a blinded public key of an onion service on the latest
DHT. Since HSDirs organized on the two DHTs receive the
same number of distinct blinded public keys, the estimated
onion service size is theoretically the same, i.e., Ê1

i = Ê2
i .

The total estimated onion service size becomes

Êi =
Xi

P 1
i + P 2

i

, (9)

where Êi = Ê1
i = Ê2

i .

DHT

...

...

.
.
.

i

i+1

i+2

i+3

jj+1
j+2

j+3

n-1

0

1
IDr=1

IDr=2

Fig. 3: DHT structure

(HSDiri)

a2DHT

... i-8

i-4i

.

..

a1

a3

p
i p

i-1
p
i-2

p
i-3

p
i-4

p
i-5

p
i-6

p
i-7

Fig. 4: The 3 cases of descrip-
tor ID falling on a DHT

C. V3 onion service popularity and core websites
Once we derive the estimated size of onion services, we

build a collection system to collect V3 onion addresses, and

4
Authorized licensed use limited to: Southeast University. Downloaded on November 27,2023 at 12:02:32 UTC from IEEE Xplore. Restrictions apply.

then try to comprehensively analyze the popularity of V3
onion services so as to discover the core websites on the
Tor network. We first classify the onion services into two
groups: public onion services and private onion services.
Onion services whose addresses can be searched through
public search engines, e.g., Google and Bing, are referred to
as public onion services in this paper. The owners of these
onion services intend to publish their service to users around
the world by posting their onion addresses to various public
forums. The rest onion services, referred to as private onion
services, are only available to users who derive the onion
addresses from the owners of onion services via out-of-band
channels. In contrast to the V2 onion service mechanism,
the enhanced V3 onion service mechanism can keep the
HSDirs from collecting the onion addresses. Consequently,
we can only collect the public onion addresses. We build a
V3 onion address collection system to derive the public V3
onion addresses as depicted in Section IV-A.

Intuitively, since the online time of a public V3 onion
service can reflect how popular an onion service is, we
propose an onion service aliveness detection approach without
compromising the privacy of an onion service. We leverage the
onion service publication mechanism to detect the aliveness of
an onion service so that we can tackle the risk of endangering
the privacy of the onion service. Recall that onion services
periodically upload descriptors to the responsible HSDirs,
enabling the clients to obtain the IPO information to access the
onion service. Therefore, we can check the online status of the
onion service by inspecting the existence of the descriptors of
the target onion service on the Tor network. To determine the
existence of descriptors, we first extract the public key of the
public onion address in terms of Equation (1) so as to derive
the blinded public key of the onion service. Then indices of all
the HSDir on the current DHT are calculated via Equations
(3). Next, we can obtain the indices of responsible HSDirs
of the target onion service using the blinded public key of
the target onion service in terms of Equation (4). Then we
emulate a Tor client to create a 3-hop circuit to the responsible
HSDirs of each public onion service and send requests with
the blinded public keys to download the descriptors. If the
responsible HSDirs respond the requests with a descriptor, we
can infer that the target onion service is online. Otherwise,
it is offline. Since our approach is a non-intrusive one that
does not initiate a connection to a target onion service, our
detectors cannot compromise the privacy of the onion service.
Moreover, the accuracy of the detection is 100% in the light
of the onion service publication mechanism. In practice, our
approach is used to inspect all onion addresses periodically,
i.e., one day, and thus obtain the online time of all public onion
services. To more objectively represent the online status of an
onion service, we define the online rate of an onion service
as the ratio of the online time of the onion service to the total
monitored time. Let oi and Oi be the number of online days
and the total monitored days of the ith onion service after
we discover it, respectively, then the online rate of the target

onion service is
Ri

o =
oi
Oi

(10)

In addition, we leverage the access frequency to evaluate
the popularity of onion services. Recall that, when a client ac-
cesses the target onion service, it calculates the blinded public
key using the onion address and requests a descriptor from
a responsible HSDir with the blinded public key. Therefore,
the number of descriptor requests received by the responsible
HSDirs in one day can represent the access frequency of
the onion service. We deploy HSDirs on the Tor network
to passively collect descriptor requests from clients. After
collecting the blinded public keys, we correlate the blinded
public keys with the public onion addresses, since the blinded
public key is generated using a one-way hash function, i.e., the
blinded public key can be derived from the onion address. By
counting the number of requests for a blinded public key, we
can derive the frequency of the corresponding onion service
accessed by clients.

We propose a novel onion service popularity evaluation
approach to ranking public onion services based on the online
rate and access frequency, rather than based on the content
[9]–[11] that cannot precisely reflect the real rank of onion
services. Suppose that there are n public V3 onion services,
and the access frequency of the ith public V3 onion service
is Ki. Then we define an access rate of each onion service as
a normalized access frequency, i.e.,

Ri
k =

ln (Ki + 1)

max{ln (K1 + 1), . . . , ln (Kn + 1)} (11)

We use logarithm on the access frequency so as to reduce the
large differences between the access frequencies of different
onion services. Then the popularity Ui of ith public V3 onion
service becomes

Ui = (1− α)Ri
o + αRi

k (12)

where α is the parameter used to adjust the weight of the
online time and access frequency. Since most of the public
onion services are Web services, we can find the most popular
core websites from the public onion services via our method.
However, we find the mirror and phishing websites [5] on the
Tor network that may affect our evaluation results.

To identify the phishing and mirror websites on the public
onion services, we evaluate the edit distance between Docu-
ment Object Model (DOM) trees of any two websites so as
to cluster the near-identical websites into a group. We extract
the homepage of each onion service and derive the DOM trees
by analyzing the HTML code. We only keep the tag name,
class attribute and content of each node in the DOM tree so
as to preserve the structure, style and visual content features
of homepages. Then we leverage a tree edit distance method
to compute the minimum costs of a sequence of node edit
operations, e.g., insertion, deletion or substitution, so as to
transform one tree into another. We define the cost of both
the insertion and deletion operations as 3. For the substitution
operation, if the tag names are different, the substitution
cost is 3. Otherwise, we compare the style attribute and text

5
Authorized licensed use limited to: Southeast University. Downloaded on November 27,2023 at 12:02:32 UTC from IEEE Xplore. Restrictions apply.

content respectively, each of which has a substitution cost of 1.
Afterwards, we accumulate all of the operation costs to derive
the tree edit distance. The smaller the tree edit distance, the
more similar the two homepages are. Let C(Ta, Tb) be the costs
between the website homepage Ta and Tb. Denote the number
of HTML tags of Ta and Tb by |Ta| and |Tb|, respectively. We
then normalize the similarity by

S(Ta, Tb) = 1− C(Ta, Tb)

3 ∗ (|Ta|+ |Tb|)
(13)

After deriving the normalized similarity, we use a density-
based clustering algorithm, i.e., DBSCAN [12], to cluster
website homepages of the public onion services so as to
discover near-identical websites.

We compute the popularity of each group and derive the
final rank of the groups. We accumulate the access frequency
of each onion service for each group, and use the largest online
rate of onion services for each group. Then we can obtain
the raw popularity of the ith group, i.e., Gi, using Equation
(12). Afterwards, we further leverage onion addresses recorded
in various yellow websites from Internet and onion services
to objectively evaluate the popularity of onion services. The
yellow websites maintain a series of well-known public onion
addresses to allow users to easily discover these onion ser-
vices. Then we define the appearance rate as mi

M to show
how popular the onion services in the ith group in these yellow
pages, where mi is the number of yellow pages that include
any onion address in the ith group and M is the total number
of yellow pages. Then the weighted group popularity becomes

Wi = (1− β)Gi + β
mi

M (14)

where β is used to adjust the weight of the group popularity
and the appearance rate. After deriving the group popularity,
we can use an empirical threshold to obtain the top K popular
groups. If there are multiple onion services in a group, we
choose the onion service with the largest popularity U to repre-
sent this group. Finally, we can derive the top K core websites.

IV. EVALUATION

In this section, we first introduce the implementation of the
onion service address collection and detection system. Next,
we verify the effectiveness of V3 onion service size estimation
method, and evaluate the popularity of collected public onion
services. Finally, we cluster near-identical onion websites to
derive the core websites and discover the phishing websites.

A. Implementation
As shown in Figure 5, our public V3 onion address collec-

tion module crawls an initial set of onion addresses from some
yellow pages such as DARKWEBLINKS [13] and hidden wiki
[14]. It then searches the collected initial onion addresses via
two public search engines, i.e., Google and Bing, and two
onion service search engines deployed in a Tor onion service,
i.e., Ahmia [15] and TorDex [16], so as to crawl new onion
addresses from the searched pages. We also crawl web pages
from the collected onion services to further derive new onion
addresses. We store the new extracted onion addresses in a
database and ensure they are all crawled.

Database

 Collect client

descriptor requests

Onion

address

collector

Onion

service

detector

Probe V3 onion

service aliveness

HSDirs

Darknet Search Engines

Clearnet Search Engines

Darknet Website Pages

Tor network

Public V3 onion
address collection

Aliveness and access
frequency detection

Our HSDirs

Yellow pages

Fig. 5: Onion service address collection and detection system
The aliveness and access frequency detection module de-

tects the online time and access frequency of V3 onion
services discovered via the onion address collection module.
We leverage the Tor control protocol [17] to control 20 Tor
clients to download the descriptors of collected onion services
every day to detect their online time. We deploy 10 HSDirs
for around two years to collect the blinded public key of the
descriptors of the onion services to estimate access frequency.

We also implement a Tor onion service emulator to upload
its blinded public key to HSDirs to verify the effectiveness
of V3 onion service size estimation method. Specifically, we
modify version 0.4.2.7 of the source code of vanilla Tor and
revise its code of time management module to speed up the
emulation. We collect the information of all the real world
Tor nodes, a total of 6,786 Tor nodes including 4,000 HSDirs,
and store it in a consensus file. The emulator is configured as
an onion service to periodically generate a new blinded public
key and upload it to 8 HSDirs selected from 4000 HSDirs.
We can launch any number of emulators within a virtual same
time period and use the same consensus file to emulate a large
number of onion services on an emulated Tor network so that
we can know the real number of onion services and evaluate
the effectiveness of our onion service size estimation method.

B. V3 onion service size estimation

We leverage our Tor onion service emulators to generate a
total of 300,000 onion services and set the time period as 60
days and then define a metric to measure the effectiveness of
our estimated method. Figure 6 shows the estimated number of
onion services within the emulated 60 days using 5 randomly
selected HSDirs. We can see that the estimated number using
each HSDir fluctuates around 300,000, similar to the real
number of onion services. Moreover, the average estimated
size is even closer to the real number of the emulated onion
services. We further define a deviation rate as D =

|Ê−Et|
Et

to represent the bias of the estimated size, where Ê is the
estimated number of onion services and Et is the real number
of onion services. A smaller deviation rate D indicates that
the estimated number is closer to the real one.

Figure 7 illustrates the deviation rate of 4,000 HSDirs
respectively used to estimate the size within one day using our
emulated Tor network. We can see that more than the deviation
rate of 99.6% of the HSDirs is less than 10%, and more than
90% of the HSDirs are evaluated with deviations of less than
5%. In addition, the average deviation rate of 4,000 HSDirs
is 2.43%. Therefore, our onion service size estimation method
is remarkably effective by using a single or multiple HSDirs

6
Authorized licensed use limited to: Southeast University. Downloaded on November 27,2023 at 12:02:32 UTC from IEEE Xplore. Restrictions apply.

within one day. Moreover, Figure 8 shows the average devia-
tion rate within one day by selecting the worst top k-percent
HSDirs. As we can see from the figure, the worst top 0.2% HS-
Dirs, i.e., 8 HSDirs, can achieve less than 10% deviation rate.

After verifying the effectiveness of our method on an
emulated Tor network, we estimate the number of onion
services on the real Tor network and continuously monitor
it for up to 2 years. According to our emulation results, we
can use a few HSDirs to derive an accurate estimation result,
therefore, we deploy 10 HSDirs on the real Tor network.
Figure 12 depicts the estimated number of V3 onion services
on the real Tor network from July 1, 2020 to July 2, 2022. We
can see that the number of V3 onion services gradually and
steadily increases from 70,000 on July 1, 2020 to 1,200,000 on
May 28, 2022. We also compare our estimated size with that
using the existing estimation methods [18], [19]. However,
the method proposed by Hoeller et al. [18] is inaccurate.
Recall that, since a HSDir can receive blinded public keys
from both two DHTs in one day as shown in Figure 2, two
capture probabilities of the HSDir are different in these two
DHTs. They use the total number of blinded public keys and
only one of the capture probability rather than both capture
probabilities to estimate the onion service size. Alternatively,
the official estimated data [19] is also online starting at Sep.
18, 2021 without publishing the detailed estimation method.
The estimated data is less than that of our method as they may
remove some temporarily appeared blinded public keys. Since
our method is effectively verified on a large-scale emulated Tor
network, our estimated V3 onion service size is very reliable.

C. V3 onion service usage status

We measure V3 onion service usage by analyzing the upload
and download of descriptors from the server-side and the
client-side, respectively. Table I shows the number of onion
service descriptors and blinded public keys received by our de-
ployed HSDirs and the number of descriptors and blinded pub-
lic keys downloaded by Tor clients ranging from July 1, 2020
to July 2, 2022. As shown in the table, we receive a large num-
ber of descriptor and blinded public key download and upload
requests, respectively. The successful onion service upload
rates of the descriptors and blinded public keys are 99.26% and
99.99%, respectively, since few descriptors and blinded public
keys are not correctly parsed due to the format issues, times-
tamp issues, etc. However, Only 13.01% and 8.42% of up-
loaded descriptors and blinded public keys are downloaded by
clients, respectively. Note that the descriptors are uploaded to
the 8 responsible HSDirs and only downloaded randomly from
6 HSDirs, i.e., 75% uploaded descriptors can be used. Suppose
that the descriptor is downloaded by a client only once within
a day. Then the probability that one of our deployed HSDirs is
selected is 12.5%, i.e., 6

8×
1
6 , which is higher than 8.42%, indi-

cating that some onion services may be rarely or not accessed.

D. V3 onion service popularity and core websites

We leverage our onion service address collection and detec-
tion system to collect public V3 onion addresses and detect

TABLE I: Descriptor statistics from server-side and client-side
Description Descriptor Blinded public key

Number Rate Number Rate

Server-side
Total upload 87,200,319 - 4,265,280 -
Successful upload 86,556,546 99.26% 4,265,274 99.99%
Usage 11,261,361 13.01% 359,513 8.42%

Client-side Total download 246,931,239 - 1,659,174 -
Successful download 30,571,721 12.38% 348,007 20.97%

the aliveness and access frequency of the onion services.
Particularly, we collect a total of 57,531 valid public V3 onion
addresses from July 1, 2020 to July 20, 2022. Then we collect
descriptor download requests for these addresses during this
period to calculate the access frequency of the onion services.
We perform the online status detection from January 1, 2021
to July 20, 2022 so as to calculate the online rate of the
onion service. Figure 9 and Figure 10 illustrate the CDF of
online rate and access rate for the public V3 onion services,
respectively. As we can see from Figure 9, the online rate
of 80% of onion services is over 80%. Thus, most of public
onion services are very stable. The access rate of less than
20% of public onion services is greater than 20% as shown in
Figure 10. Accordingly, only a few of the onion services are
frequently accessed by users. Finally, according to Equation
(12), we set parameter α to 0.6 to derive the popularity of all
public onion services as the popular onion services are always
accessed by users. The CDF of the popularity of the public V3
onion services is shown in Figure 11. The popularity of around
50% of the onion services is between 0.4 and 0.5, while the
popularity of only 10% of the onion services is above 0.5.

We cluster near-identical onion websites from public onion
services into groups and then compute the group popularity
so as to obtain the core websites on the Tor network. We
discover 45,889 onion websites out of 57,531 onion services
and crawl the homepages of the websites. Then, we compute
the similarity between the homepages of each website and
derive 6,177 website groups by clustering with the similarity
greater than 0.9. Afterwards, we collect a total of 112 yellow
pages from Internet and onion services that contains more than
50 distinct onion addresses. Then we calculate the appearance
rate in terms of Equation (14) to obtain the popularity of the
website groups, where the parameter β is empirically set to
0.1. Figure 9, 10 and 11 show the CDF of online rate, access
rate and popularity for website groups, respectively. According
to the popularity distribution, we set the threshold to 0.55 and
obtained 487 core website groups, accounting for 8% of the
total. Finally, we select the most popular onion service in each
website group as a representative and derive the top 487 core
websites on the Tor network.

To figure out the types of the core websites, we manually
categorize and compute the popularity of each category, as
depicted in Figure 13. Most of core websites fall into the
category of Pornography, followed by the Finance. We use
the average popularity of core websites in each category to
represent the category popularity. We discover that the Finance
is the most popular category, offering diverse services such as
counterfeit money, cryptocurrency, money transfer and credit
cards. The Service are some general services deployed by con-
tent providers, such as website hosting, search engine, escrow,

7
Authorized licensed use limited to: Southeast University. Downloaded on November 27,2023 at 12:02:32 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50 60

Days

20

22

24

26

28

30

32
E
s
ti

m
a
te

d
 n

u
m

b
e
r
 (

1
0

4
)

HSDir 1

HSDir 2

HSDir 3

HSDir 4

HSDir 5

Average estimated number

Fig. 6: Estimated numbers via 5 HSDirs

0 5 10 15 20 25 30 35

Deviation rate (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

Fig. 7: Deviation rate

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Percentage of deployed HSDirs (%)

0

5

10

15

20

25

30

D
e
v
ia

ti
o
n

 r
a
te

 (
%

)

Fig. 8: Average deviation rate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Online rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

Onion service

Onion website group

Fig. 9: CDF of online rate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Access rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

Onion service

Onion website group

Fig. 10: CDF of access rate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Popularity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

Onion service

Onion website group

Fig. 11: CDF of popularity

20
20

-0
7-

01
20

20
-0

7-
30

20
20

-0
8-

31
20

20
-0

9-
29

20
20

-1
0-

24
20

20
-1

1-
18

20
20

-1
2-

13
20

21
-0

1-
07

20
21

-0
2-

01
20

21
-0

4-
20

20
21

-0
5-

15
20

21
-0

6-
28

20
21

-0
7-

23
20

21
-0

8-
17

20
21

-0
9-

11
20

21
-1

0-
06

20
21

-1
0-

31
20

21
-1

1-
25

20
21

-1
2-

20
20

22
-0

1-
14

20
22

-0
3-

17
20

22
-0

4-
11

20
22

-0
5-

06
20

22
-0

5-
31

20
22

-0
7-

02

Days

0

20

40

60

80

100

120

140

160

Es
ti

m
at

ed
 n

um
be

r
(1

04
)

Hoeller's paper
Tor metric
This paper

Fig. 12: Estimated number of V3 onion services

0 20 40 60 80 100 120 140 160

Number

Other
(W :0.594)

Social
(W :0.600)

Forum
(W :0.607)

Market
(W :0.598)

Sharing
(W :0.593)

Service
(W :0.603)

Finance
(W :0.623)

Pornography
(W :0.596)

C
o
r
e
 w

e
b

s
it

e
 c

a
te

g
o
r
y

28

15

17

40

71

77

84

155

Fig. 13: Core website category

email and imageboard. The Sharing includes websites that
share resources, such as wiki, library, yellow page and leaked
data. The Market and the Forum are places for trading and
information exchange and attract the attention of many illegal
users, such as Archetyp market [20] and Helium Forum [21].
The Social includes some social networking platforms or chat
rooms on the Tor network. We put the rest of the unidentifiable

websites into the Other. Finally, the top 6 most popular core
websites are Archetyp market [20], ROYALMARKET [22],
DARKMONEY [23], VClub [24], dark.fail [25] and ASAP
market [26]. The fifth website is a well-known yellow page
and the rest are black markets. It shows that black markets are
very popular on the Tor network.

E. Phishing website identification

We leverage the popularity of the onion services to identify
the official onion websites within each website group. To
obtain the core websites, we cluster the websites with near-
identical content into groups that may contain both mirror sites
and phishing sites. Table II illustrates the distribution of the
number of websites within a group. There are 6 groups that
contain total 8,234 onion services and each of which includes
more than 1,000 onion services. All the 6 groups belong to
the core website groups. 63 groups that contain 25,270 have
the number of onion services ranging from 100 to 1,000, 60 of
which belong to the core websites. We find that 149 website
groups have the number of onion services between 10 and
100. The corresponding core website groups have 2,190 onion
services although there are only 69 of them. The number of
the rest website groups is 5,959, each of which includes less
than 10 onion services. There are 352 core website groups in
these groups. We find that a large number of near-identical
websites belong to the core websites. Commonly, websites
are not open a large number of mirror sites because of the
overhead of the hosting cost. Consequently, most of the near-
identical websites are phishing websites. However, due to the
anonymity of the onion services, it is nontrivial to identify
phishing websites without any clues. Since an official website
should be the most popular one within each website group
and is the least likely to be a phishing website, we take core
websites in each website group as the default official one.

8
Authorized licensed use limited to: Southeast University. Downloaded on November 27,2023 at 12:02:32 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Clustering results for websites
Range of

each group
All website group (#) Core website group (#)
Group Onion service Group Onion service

≥1000 6 8,234 6 8,234
[100,1000) 63 25,270 60 24,616

[10,100) 149 3,873 69 2,190
<10 5,959 8,512 352 913

TABLE III: Identified phishing websites

Category Core website
groups (#)

Official
websites (#)

Phishing
websites (#)

Pornography 156 160 3,053
Finance 85 85 23,875
Service 75 111 2,449
Sharing 74 94 2,122
Market 40 96 3,731
Forum 17 22 24
Social 15 16 17
Other 25 38 60
Total 487 622 35,331

We leverage the official onion website to find mirror sites
in two ways. One is to access the official website and search
the mirror onion addresses. Alternatively, we can search the
mirror addresses of the target website on well-known yellow
pages, such as dark.fail [25], Onion.Live [27] and Darknetlive
[28]. We can find all mirror addresses of the core websites
using the two ways. In addition to the core website and the
mirror websites, we consider the rest of onion services within
a website group as phishing websites. Table III shows the
number of identified phishing websites and official websites
including the mirror websites from the core website groups.
Within the 487 core website groups, we identify a total of 622
official websites and 35,331 phishing websites. The Finance
is the most popular category of onion services. However, the
number of phishing websites is also the highest with 23,875.
The purpose of these phishing websites is commonly to scam
users out of their money. The Market is harder to spoof due to
the usage of complicated login schemes and PGP signatures
for mirror addresses, resulting in fewer market phishing web-
sites. Other categories, such as the Pornography, the Service
and the Sharing, can be directly cloned by attackers to attract
user visits to earn advertising fees or for other purposes. The
Forum, the Social and the Other are not profitable, resulting in
few phishing websites. Finally, we discover 35,331 phishing
websites within the core website groups.

V. RELATED WORK

The Tor Metrics project [29] is the official website for
measuring, analyzing, and visualizing the Tor network. After
the onion services protocol was upgraded from V2 to V3,
the previous method [30] of evaluating the number of onion
services is no longer effective. Hoeller et al. [18] propose a
V3 onion service size estimation method, however they only
use one of the capture probability rather than both capture
probabilities to estimate the onion service size, resulting in
large fluctuations in evaluation results. Tor officially starts
to provide the estimated number of V3 onion services from
September 18, 2021, however, does not provide a specific
evaluation method. Our method is theoretically analyzed and
effectively evaluated on a large-scale emulated Tor network.

The popularity and content of onion services attract the
interest of many researchers. For example, Biryukov et al. [31]
[32] estimate the popularity of onion services by inspecting
the request rate of clients for onion service descriptors. Al-
Nabki et al. [9] propose a ToRank algorithm to rank onion
services, which constructs a graph by using onion services
as nodes and hyperlinks into and out of onion services as
edges. The weights of neighboring nodes are accumulated to
update the popularity of each onion service. Another study by
them [10] uses features extracted from onion service content to
investigate a Learning-to-Rank algorithm, automatically learn
the ranking function and detect the most influential onion
services. Spitters et al. [33] apply classification and topic
model-based text mining techniques to the content of onion
websites to model topic organization and linguistic diversity to
enable topic classification. However, the content-based ranking
method is inaccurate and fails to reflect the real popularity
of onion services. There are other studies on the longevity
of V2 onion services [34] [35], which conclude that most
onion services are online for relatively short periods of time.
However, during one and a half year period, we discover that
most of public V3 onion services are stable.

VI. CONCLUSION

We perform a comprehensive and long-term analysis to shed
light on the latest V3 onion services. We propose an onion
service size estimation approach and discover around 900,000
onion services on the Tor network. Since the V3 protocol
significantly enhances privacy of onion services, we can only
focus on the public onion services that can be learned from
search engines. Then we leverage a set of two-year onion
service behavior data derived by deploying 10 HSDirs on the
Tor network, and investigate a novel onion service popularity
estimation method to rank the public onion websites. We only
discover 487 core websites out of 45,889 onion websites.
Furthermore, we analyze the structure and content of the onion
websites and discover that 35,331 phishing websites spoof the
487 core websites. We infer that attackers may make a great
profit by hosting so many phishing websites.

ACKNOWLEDGMENT

This research was supported in part by National Natural
Science Foundation of China Grant Nos. 62022024, 61972088,
62072103, 62102084, 62072102, 62072098, 62232004, and
61972083, by US National Science Foundation (NSF) Awards
1931871, 1915780, and US Department of Energy (DOE)
Award DE-EE0009152, Jiangsu Provincial Natural Science
Foundation of China Grant No. BK20190340, Jiangsu Provin-
cial Key R&D Program Nos. BE2021729, BE2022680, and
BE2022065-4, Jiangsu Provincial Key Laboratory of Network
and Information Security Grant No. BM2003201, Key Labo-
ratory of Computer Network and Information Integration of
Ministry of Education of China Grant Nos. 93K-9, and Col-
laborative Innovation Center of Novel Software Technology
and Industrialization. Any opinions, findings, conclusions, and
recommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

9
Authorized licensed use limited to: Southeast University. Downloaded on November 27,2023 at 12:02:32 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Naval Research Lab Washington DC, 2004.

[2] dgoulet, “Onion service version 2 deprecation timeline | tor blog.” https:
//blog.torproject.org/v2-deprecation-timeline, 2022.

[3] N. Hopper, “Proving security of tor’s hidden service identity blinding
protocol,” Tor Technical Report, 2013.

[4] G. Owen and N. Savage, “Empirical analysis of tor hidden services,”
IET Information Security, vol. 10, no. 3, pp. 113–118, 2016.

[5] C. Yoon, K. Kim, Y. Kim, S. Shin, and S. Son, “Doppelgängers on the
dark web: A large-scale assessment on phishing hidden web services,” in
Proceedings of the 30th World Wide Web Conference (WWW), pp. 2225–
2235, 2019.

[6] R. Van Wegberg, S. Tajalizadehkhoob, K. Soska, U. Akyazi, C. H.
Ganan, B. Klievink, N. Christin, and M. Van Eeten, “Plug and prey?
measuring the commoditization of cybercrime via online anonymous
markets,” in Proceedings of the 27th USENIX Security Symposium
(USENIX security), pp. 1009–1026, 2018.

[7] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of Cryptographic Engineering,
vol. 2, no. 2, pp. 77–89, 2012.

[8] C. Wang, J. Luo, Z. Ling, L. Luo, and X. Fu, “A comprehensive and
long-term evaluation of tor v3 onion services.” http://webplus.seu.ed
u.cn/_upload/article/files/f2/e8/9727cbd24b58b008ffb4a4ab2d97/0f8d58
d2-464a-47bb-ae21-26e2a48dc652.pdf, Technical Report, 2023.

[9] M. W. Al-Nabki, E. Fidalgo, E. Alegre, and L. Fernández-Robles,
“Torank: Identifying the most influential suspicious domains in the tor
network,” Expert Systems with Applications, vol. 123, pp. 212–226,
2019.

[10] M. W. Al-Nabki, E. Fidalgo, E. Alegre, and D. Chaves, “Content-based
features to rank influential hidden services of the tor darknet,” arXiv
preprint arXiv:1910.02332, 2019.

[11] M. Faizan, R. A. Khan, and A. Agrawal, “Ranking potentially harmful
tor hidden services: Illicit drugs perspective,” Applied Computing and
Informatics, 2020.

[12] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining (KDD), vol. 96, pp. 226–231, 1996.

[13] DARKWEBLINKS.COM, “Dark web links.” https://darkweblinks.com/,
2022.

[14] Hidden Wiki, “The hidden wiki.” http://zqktlwiuavvvqqt4ybvgvi7tyo4hjl
5xgfuvpdf6otjiycgwqbym2qad.onion/wiki/index.php/Main_Page, 2022.

[15] J. Nurmi, “Ahmia - search tor hidden services.” https://ahmia.fi/, 2022.
[16] TorDex, “The uncensored index of tor onion sites - tordex.” http://tordex

u73joywapk2txdr54jed4imqledpcvcuf75qsas2gwdgksvnyd.onion/, 2022.

[17] Tor project, “control-spec.txt - torspec - tor’s protocol specifications.”
https://gitweb.torproject.org/torspec.git/tree/control-spec.txt, 2022.

[18] T. Hoeller, M. Roland, and R. Mayrhofer, “On the state of v3 onion
services,” in Proceedings of the ACM SIGCOMM 2021 Workshop on
Free and Open Communications on the Internet, pp. 50–56, 2021.

[19] Tor project, “Onion services - tor metrics.” https://metrics.torproject.org
/hidserv-dir-v3-onions-seen.html, 2022.

[20] Archetyp Market, “Archetyp market.” http://4pt4axjgzmm4ibmxplfiuvo
pxzf775e5bqseyllafcecryfthdupjwyd.onion/, 2022.

[21] Helium community, “Helium forum & marketplace.” http://fahue6hb7o
dzns36vfoi2dqfvqvjq4btt7vo52a67jivmyz6a6h3vzqd.onion/, 2022.

[22] ROYALMARKET, “Royalmarket.” http://royalyygxzq5fadtlgzftq3dwp
dycq4gvddmvhrk3l2gjzsfqqwpvwad.onion/, 2022.

[23] DARKMONEY, “Darkmoney.” http://darkmonn6oy55o7kgmwr4jny2gi2
zj6hyalzcjgl444dvpalannl5jid.onion/, 2022.

[24] Anonymous, “Vclub.” http://vclubccvd426icndg43sjpaowcdkiatcmdfj3z
w4mc2z6zwbhvecwmyd.onion/, 2022.

[25] Darkdot Research, Inc, “Dark.fail.” http://darkfailenbsdla5mal2mxn2uz
66od5vtzd5qozslagrfzachha3f3id.onion/, 2022.

[26] ASAP Market, “Asap market.” http://asap2u4pvplnkzl7ecle45wajojnftja
45wvovl3jrvhangeyq67ziid.onion/, 2022.

[27] OnionDotLive, “Onion.live.” https://onion.live/, 2022.
[28] Darknetlive, “Darknet market news, links, and guides | darknetlive.” ht

tps://darknetlive.com/, 2022.
[29] Tor project, “Welcome to tor metrics.” https://metrics.torproject.org/,

2022.
[30] G. Kadianakis and K. Loesing, “Extrapolating network totals from

hidden-service statistics,” Tor Technical Report, 2015.
[31] A. Biryukov, I. Pustogarov, and R.-P. Weinmann, “Trawling for tor

hidden services: Detection, measurement, deanonymization,” in Pro-
ceedings of the 34th IEEE Symposium on Security and Privacy (S&P),
pp. 80–94, 2013.

[32] A. Biryukov, I. Pustogarov, F. Thill, and R.-P. Weinmann, “Content and
popularity analysis of tor hidden services,” in Proceedings of the 34th
International Conference on Distributed Computing Systems Workshops
(ICDCSW), pp. 188–193, 2014.

[33] M. Spitters, S. Verbruggen, and M. Van Staalduinen, “Towards a
comprehensive insight into the thematic organization of the tor hidden
services,” in Proceedings of the 2014 IEEE Joint Intelligence and
Security Informatics Conference (JISIC), pp. 220–223, 2014.

[34] G. Owenson, S. Cortes, and A. Lewman, “The darknet’s smaller than
we thought: The life cycle of tor hidden services,” Digital Investigation,
vol. 27, pp. 17–22, 2018.

[35] A. Sanatinia, J. Park, E.-O. Blass, A. Mohaisen, and G. Noubir, “A
privacy-preserving longevity study of tor’s hidden services,” arXiv
preprint arXiv:1909.03576, 2019.

10
Authorized licensed use limited to: Southeast University. Downloaded on November 27,2023 at 12:02:32 UTC from IEEE Xplore. Restrictions apply.

