
interface (API) methods to provide customized acces-
sibility services in their own applications. However, the 
accessibility service has access to critical sensitive 
information, including information about applications that 
are currently running and account information. Attackers 
could utilize such a vulnerability to conduct various types 
of attacks.

To prove the concept, we develop a malicious 
applica-tion which exploits this vulnerability. The 
installation, activation, and the payload of our 
malicious application are described as follows. First, to 
install our malicious application onto user devices, our 
malicious application may appear as a legitimate 
accessibility service applica-tion and provide some 
accessibility functionality. The installation of our 
malicious application requests the 
BIND_ACCESSIBILITY_SERVICE permission. Of 
course, other permissions are required if the malicious 
payload requires such permissions. The malicious application 
is triggered once an AccessibilityEvent object is dis-
patched. There are twenty-two AccessibilityEvent types, 
and each type of AccessibilityEvent exposes 
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Abstract

1. Introduction

The number of mobile malware samples has increased 
enormously over the past two years while mobile devices 
have become a ubiquitous tool in daily life. In March 2013, 

 Juniper Networks [18] reported their Mobile Threat Center 
had discovered over 276 thousand malware samples, a 614 
percent increase  over  2012. With 92  percent  of mobile 
malware  being  Android  malware,  analyzing  and  categorizing 
these malware  are important  steps  toward  predicting new 
attacks. Many  malware samples share similar  characteristics 
and are slight  variants of one another [33].  Some  malicious  
applications attempt to trick  the user by masquerading  as a 
benign  application, but surreptitiously use  paid services or 
steal  user data.  Alongside  analyzing and  categorizing  known 
malware samples, it is also  important to  identify and fix 

 vulnerabilities  in the Android  platform that may be used by 
creators of  malicious  applications.  

In  this paper,  we  explore a security  and  privacy  risk 
hidden  within the Android  accessibility framework. The 
Android  accessibility    framework is   developed  to  assist 
physically   impaired users. Android   develop-ers  can 
utilize   accessibility  applications programming
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types in section 2. Our malicious application supports 
various malicious payloads. In this paper, we imple-ment 
one payload which launches a masquerade attack to collect 
user’s email login credentials.

Our major contributions are summarized below:

• We are the first to identify malware leveraging 
Android’s accessibility framework. The impact of this 
attack is severe, given that it can be used to activate 
various malicious payloads. For example, the payload 
can be various masquerade attacks, emulating Email, 
Facebook and other popular apps to steal user 
credentials and cause other damage. We test our proof-
of-concept malware against multiple anti-malware 
applications and none are able to detect it.

• We identify a potential logic error in the way the 
Android user interface framework manages the order 
of application launches. When two applications are 
launched nearly simultaneously, both launch requests
consider the first request to be processed as the next 
application to be launched, preventing the second 
launch from occurring. This can lead to a variety of 
attacks, such as denial of service and masquerade
attacks, as we discuss in Section 3.3.

• Our study complements the categorization of
Android malware by Zhou and Jiang [33],
who present a systematic characterization of
existing Android malware by their strategies of
installation, activation, payload and permission use.
We identify new events for activation and our attack
shows that the payload can be other attacks, such as
the masquerade attack demonstrated in this paper.

• We also discuss possible countermeasures against the
security risk from the Android accessibility
framework.

The rest of the paper is organized into six 
sections. Section 2 introduces Android accessibility 
service. Section 3 introduces our attack. We evaluate our 
proposed attack in Section 4, and discuss 
countermeasures in Section 5. Section 6 introduces 
other related work, and Section 7 concludes this paper.

2. Background
In this section, we introduce the Android accessibility 
service and masquerade attack. The malicious payload of 
the new malware can be a set of attacks, depending on 
which app a victim user launches. The malware detects 
the app launch via the Android accessibility service, 
displays a corresponding user interface imper-sonating the 
app, and performs credential collection or other malicious 
behavior.

2.1. Android Accessibility Service

An Android application must contain one or more of the 
following four components: Activity, Service, Broadcast 
Receiver, and Content Provider [15]. Activities repre-sent 
tasks involving user interaction and can display drawable 
components, such as widgets, to the screen. The operating 
system ensures that only a single Activ-ity for any 
application is displayed at once, i.e. only one application may 
be in the foreground at one time. Services are used for long 
running tasks that do not require a user interface. Unlike 
Activities, Services may run in the background and therefore 
multiple Services from different applications may run 
simultaneously. Broadcast Receivers receive messages, in the 
form of data constructs called Intents, from the Android 
system or user applications. An application must register for 
those Intents which it is interested in receiving. The 
registration of certain Intents may require permission to be 
granted by the user at install time. Content Providers enable 
data sharing between applications. The exploit presented in 
this paper will focus on Activities and Services.

The Android operating system contains an accessibil-ity 
framework [9] for enhancing the experience of users who 
have visual or other impairments. Typical acces-sibility 
enhancements include enlargement and text-to-speech 
conversion of on-screen elements, high con-trast color 
schemes, and haptic feedback. Android pro-vides a Java 
API to its accessibility framework so that developers can 
integrate accessibility functionality into their applications. 
All drawable elements derive from a common ancestor, the 
View class, which contains built-in calls to Accessibility 
API methods. Thus, most user interface widgets in the 
Android framework make their accessibility information 
available by default, though developers are encouraged to 
provide additional infor-mation in the 
android:contentDescription XML lay-out attribute. 
Accessibility information such as the UI event type, 
class name of the object in which the event occurred or 
originated, and string value repre-senting some associated 
data can be populated into an AccessibilityEvent object and 
dispatched to enabled AccessibilityServices via the 
appropriate method call [19]. There are twenty two 
AccessibilityEvent types: 
TYPE_ANNOUNCEMENT,TYPE_GESTURE_D 
ETECTION_END,TYPE_GESTURE_DETECTION_STA 
RT,TYPE_NOTIFICATION_STATE_CHANGED,TYPE 
_TOUCH_EXPLORATION_GESTURE_END,TYPE_TO 
UCH_EXPLORATION_GESTURE_START,TYPE_TOU 
CH_INTERACTION_END,TYPE_TOUCH_INTERACT 
ION_START,TYPE_VIEW_ACCESSIBILITY_FOCUSE 
D,TYPE_VIEW_ACCESSIBILITY_FOCUS_CLEARED, 
TYPE_VIEW_CLICKED,TYPE_VIEW_FOCUSED,TYP 
E_VIEW_HOVER_ENTER,TYPE_VIEW_HOVER_EXI 
T,TYPE_VIEW_LONG_CLICKED,TYPE_VIEW_SCRO

2

different information which can be utilized by our malicious 
application to activate different malicious payloads. We will 
introduce these AccessibilityEvent
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Figure 1. Accessibility Service Warning Dialog

LLED,TYPE_VIEW_SELECTED,TYPE_VIEW_TEXT_C
HANGED,TYPE_VIEW_TEXT_SELECTION_CHANG
ED,TYPE_VIEW_TEXT_TRAVERSED_AT_MOVEME
NT_GRANULARITY,TYPE_WINDOW_CONTENT_C
HANGED,TYPE_WINDOW_STATE_CHANGED [10].

Additionally, as of Android 1.6, developers may
create custom accessibility services by extending the
AccessibilityService class [11]. Descendants
of AccessibilityService must override the
onAccessibilityEvent method, which gets called
each time an Accessibility Event occurs and is passed
the populated AccessibilityEvent object. A custom
AccessibilityService may then use the information
contained in the AccessibilityEvent or optionally
query the window content for the contextual data
needed to perform its function. Naturally, the receipt
of an event and its associated data and the ability to
query window content present a security risk. For
example, every time a user inputs text into an EditText

widget, a custom AccessibilityService will receive
an AccessibilityEvent with type TYPE_VIEW_TEXT_

CHANGED that contains the text that the user input. To
mitigate this risk, the Android system requires that
AccessibilityServices be enabled manually by the
user and displays a dialog window alerting the user to
the risk.

The alert in Figure 1 states that the service can
collect all of the text a user types, except for passwords.
Passwords are prevented from being collected if the
android:password XML attribute of the EditText

object is true, causing the typed characters to display
as asterisks and the AccessibilityEvent not to be
populated with the EditText content. We describe a
technique in Section 3 that does allow passwords to be
collected.

2.2. Masquerade Attack
We formally define masquerade attacks as attacks
impersonating existing apps such as those found on
Google Play and other Android markets. Masquerade
attacks can use the same names, icons and/or interfaces
as those legitimate apps to masquerade. The “or" is
used here since it can be enough for a fake app using
the same name or icon to attract users to download
and commit damage. Of course malware with the same
name, icon and interface and functionality similar to
the legitimate app is more attractive and more likely to
be downloaded and installed.
Many fake applications masquerade as popular

games, which include Angry Birds Space [8], Fruit
Ninja, Temple Run and Talking Tom Cat. Other popular
applications such as Opera Mini [7] are also frequently
utilized to launch masquerade attacks. One malware
example is Fake Netflix [4] which disguises as Netflix.
To analyze its behaviour, we use apktool [2] and JD
[5] to disassemble the apk file. We find that when the
application is launched, a login interface will show and
prompt the user to input account information. After the
user input account name and password, the application
creates a new HttpClient and Post Header, and send
these account information to a remote site http://

erofolio.no-ip.biz/login.php via an HTTP POST
request. After that, a dialog pops up and presents a
message “Your Android TV is not supported". When the
user pushes the button on the dialog, the application
creates an intent to uninstall itself. Another example is
Fake Media Player [1]; we also decompile its apk file
to analyze its behaviour. From its AndroidManifest.xml
file, we find that this application requests a permission
to send SMS messages during installation. From its
MoviePlayer.class and DataHelper.class files, we find
that the application performs several steps. First, it
creates a database. Then, it sends out SMS messages.
After that, this application inserts an entry into the
database with value ‘was’. The next time the application
is launched, it will check if such entry exists. If the entry
does not exist, it will send out SMS messages.
Repackaged applications that contain malicious

functions are more difficult for users to notice,
because they perform all functions that the legitimate
applications perform. When a user is using these fake
applications, the malicious function is running in the
background. One example is a group of wallpaper-
related applications. These applications upload user
information to a remote server or run searching
operations in the background to improve the ranking
of certain websites [6].

3. Malware Exploiting Accessibility Service
In this section, we first give an overview of the malware
that exploits the Android accessibility framework. We
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then address major challenges for such malware to
work, including detection of the launch of a victim
app and race condition between the victim app and
malware.

3.1. Overview

We now introduce the novel malware’s installation,
activation, malicious payloads and permission uses.
Installation: The new Android malware can provide

regular accessibility service as it claims and conduct
attacks silently. Therefore, impaired users and users
who prefer large font text may be interested in such
malware and install it onto their device. It is also rea-
sonable to assume that the malicious application could
be marketed under a category other than accessibility
services. For instance, malware authors could market a
"driving mode" app which leverages the system’s acces-
sibility features in order to provide better hands-free
operation while driving an automobile. This installation
strategy is installation.others.3rdgroup in [33], referring
to apps that intentionally include malicious functional-
ity. For brevity, we denote installation.others.3rdgroup
as trojan, “a program made to appear benign that serves
some malicious purpose" according to the taxonomy in
[27], although this definition of trojan may be contro-
versial.
Permission Uses: During installation, the malware

requests the BIND_ACCESSIBILITY_SERVICE permis-
sion. After installation, users must enable the Acces-

sibilityService in Android’s Accessibility Settings
menu. Since a legitimate accessibility service also
requests such permission and requires enabling, users
may not suspect the motivation of our malware. Of
course, other permissions are required if the malicious
payload requires them. However, Felt et al. [3] show
that only 17 percent of Android users actually pay
attention to application permissions at the time an
app is installed. Furthermore, only 56.7 percent of
participants in the study claimed they had canceled
an app installation because of issues with its permis-
sions. Given these startling statistics, the installation
of a malicious app requiring the BIND_ACCESSIBILITY_
SERVICE permission and its required payload per-
missions could realistically be performed by typical
Android users.
Activation: After the installation, our malware can

derive a list of all installed applications in that device.
This can be achieved via many sources, such as the
Package Manager. Based on which applications are
installed, our malicious application could download
various payloads and use them to launch different
attacks. Each time a user launches an application
from the home screen or the application drawer,
our malicious accessibility service is activated, and a

malicious payload which targets that application is also
activated.
Here, we make one complement to the events which

could be used by Android malware, introduced in
[33]. As we introduced in Section 2, the Accessibil-

ityEvent is one critical event, which carries sufficient
information. There are twenty-two types of Accessi-
bilityEvent, and these types of events can trigger
various types of malicious payloads.
Malicious Payload: Since we know what applications

are installed, we can use different malicious payloads
to launch different attacks. For example, the default
Email application source code is freely available from
the Android Open Source Project [13]. In this case,
our malicious payload could masquerade as the Email
application. Therefore, when a user launches the Email
application, a fake login window will display and
prompt the user to input account name and password.
Such account information is then collected and sent
over an encrypted channel to a remote server (requires
additional INTERNET permission).
To implement the masquerade attack in this example,

we extract the Account SetupBasics Activity and its
corresponding resources from the Email application,
modify it, and package it into a fake application as a
malicious payload. AccountSetupBasics is displayed
when the Email application is launched and no
previous email account has been setup. It was chosen
because of its simple design, the popularity of the
Email application, and having the fields required
to demonstrate the attack. The AccountSetupBasics

layout consists of two EditText widgets for username
and password input, and two Buttons: one for
activating the Manual Setup feature and the other for
navigating to the next step in the setup process. The
counterfeit AccountSetupBasics Activity included in
our AccessibilityService application duplicates all
of the graphical user interface elements of the victim
Activity, but the email account setup functionality
of the victim Activity has been removed. Though
we have chosen to imitate the Email application’s
AccountSetupBasics Activity for this experiment,
any Activity may be used in the attack. In this
example, our AccessibilityService provides no
additional accessibility features, but attackers could
easily provide such features to increase the guile of this
attack. For our malware to work, there are two more
details we have to address:

• How can the malware detect the victim app
launch? Although the malicious accessibility
service is able to receive events related to
Activity launch, it still needs to distinguish
which app is generating these events so that it can
launch the corresponding fake app and perform
the masquerade attack.
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• How can the malware display itself to the user
while the victim app is hidden in the background?
When the user touches an app, this app will be
launched. Which app, our impostor or the victim
app, will be displayed? How can our impostor win
the race condition?

We address these two issues below.

3.2. Detecting Application Launch
A crucial piece of our masquerade attack is the ability
to detect the launch of a victim application. There is
no public API to allow a user application to be notified
when another application is launched. An application
could poll the ActivityManager for changes in the run-
ning task list, but this solution could impact CPU and
battery performance, and some delay between launch
and the detection could occur. Another technique used
by malware authors involves using the READ_LOGS per-
mission to parse the system-level debug logs in hopes
of obtaining information about the state of the system,
such as what applications were being launched. To
thwart this attack vector, as of Android API version
16 (Jelly Bean), the Android development team has
made the READ_LOGS permission unavailable to non-
system applications. We demonstrate that the Acces-
sibility API provides a subtle method for detecting
when an application is launched from the home screen
or the app drawer. By registering to receive Acces-

sibilityEvent callbacks in the application manifest,
our custom AccessibilityService is guaranteed to be
notified when an application is launched by the user.
The notification comes in the form of an Accessibil-

ity-Event object that is delivered as an argument to
our AccessibilityService’s onAccessibilityEvent

method. The Launcher application, which is respon-
sible for displaying icons and widgets on the home
screen and maintaining the app drawer, populates the
AccessibilityEvent when the Email application icon
is clicked by the user. Please refer to Table 1 for infor-
mation contained in AccessibilityEvent.
From the information in the AccessibilityEvent,

we can determine that the user clicked an icon
in the Launcher, because the event type is TYPE_

VIEW_CLICKED and the originating package name is
com.android.launcher. We’re able to identify which
icon was clicked based on the Text field of the
Accessibility-Event. In the case of attacking Email,
the Text field is a single element list containing the
string “Email". Once the app launched by the user
has been detected, the next step in the attack is to
launch the malicious Activity instead of the user
desired Activity. To do this, an Intent that specifies
the malicious Activity to be launched is created
and passed to the startActivity method of our
AccessibilityService.

Table 1. Information in AccessibilityEvent

EventType TYPE_VIEW_CLICKED
EventTime 2477012
PackageName com.android.launcher
MovementGranularity 0
Action 0
ClassName android.widget.TextView
Text [Email]
ContentDescription null
ItemCount -1
CurrentItemIndex -1
IsEnabled true
IsPassword false
IsChecked false
IsFullScreen false
Scrollable false
BeforeText null
FromIndex -1
ToIndex -1
ScrollX -1
ScrollY -1
MaxScrollX -1
MaxScrollY -1
AddedCount -1
RemovedCount -1
ParcelableData null
recordCount 0

3.3. Racing to the Top
The launch of the malicious Activity from our
AccessibilityService does not prevent the Launcher
app from also calling startActivity to start the
legitimate Activity. Both Activities are created and
dispatched to the Activity-Manager to be displayed.
As previously mentioned, only a single Activity may
be displayed in the foreground at one time. This is a
source of contention for our malicious Activity, which
we want to be displayed instead of the victim Activity

and without any suspicious screen flicker or transition
animation that may alert the user to the presence of
malware. Since the malicious AccessibilityService

receives AccessibilityEvent and is able to detect
launch of victim app, it has a chance to launch the
malicious Activity before the victim Activity is
launched.
The Android ActivityManager organizes related

Activities into Tasks, each with a stack for keeping
track of Activity order. Figure 2 depicts a high-level,
simplified state transition diagram for the code that
determines which Activity to display next. In general,
when a new Activity is started, a task history record is
created for it and pushed onto the history stack. If the
Activity already exists in the history stack, its history
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Figure 2. Activity Launch State Transition Diagram

record is moved to the top of the stack. The component
which requests the Activity to be started can supply
additional flags to the startActivity Intent that may
alter this behavior, but we focus on the default behavior.
Once the stack manipulation is complete, the system
attempts to display/resume the top Activity. However,
to comply with Android’s Activity lifecycle model, the
current Activity must first be paused. This ensures
that the current Activity has a chance to save its
state before being put into the background. To protect
consistency, no Activity is allowed to be displayed
until the current Activity has finished pausing. When
the pause is complete, the system will attempt to
display/resume the Activity at the top of the history
stack.

Our malware exploits this logic by launching the
malicious Activity as soon as the victim Activity

launch has been detected. In the case where both the
malicious and victim Activities belong to tasks on
the history stack, the malicious Activity will always
be displayed over the victim. This is because the launch
detection reacts to the AccessibilityEvent that is
dispatched when the user clicks the Email application
icon, which occurs before the Launcher application
dispatches its start request. Therefore, the malicious
request is received at the ActivityManager before the
victim request, thus its history record is moved to the
top of the stack. Because the two requests are received
nearly simultaneously, the victim request is skipped
due to the logic in the ActivityStack class. This is the
fundamental property which makes this attack work
when both the victim and malicious Activities are
already on the history stack. However, when neither
the malicious or victim Activities are on the history
stack, the victim Activity is pushed onto the stack
after the malicious Activity, making it next in line to
be displayed. Figure 3 shows a timeline of when these
events occur, illustrating the state of the history stack
for each case over time.

Table 2. List of Device Screen Statuses

With flash Without flash
Victim interface shows up Ω1 Ω2
Fake interface shows up Ω4 Ω3

In Section 3.4 we show that by adding some delay
to the malicious Activity launch, we can increase the
chance that the malicious Activitywill be pushed onto
the stack after the victim.

3.4. Optimal Delay
There exists a source of contention for our malicious
Activity. An attacker wants the malicious Activity

to be displayed instead of the victim Activity without
any suspicious screen flash, flicker, or transition
animation that may alert the user to the presence of
malware. To achieve this goal, the timing of launching
malicious Activity should be carefully adjusted so
that the malicious Activity is processed soon after
the victim Activity. Therefore, the problem is how to
derive an optimal delay for the malicious Activity. We
present our analysis below.
We find that different delay of the malicious

Activity produces four different statuses of the
device screen. Before introduce the four statuses,
please note that when the malicious Activity is
processed, a fake interface is created and displayed.
Please also note that when the victim Activity is
processed, a victim interface is created and displayed.
Depending on the timing of processing each activity,
there are four scenarios. (I) The malicious Activity

is processed before the victim Activity. The fake
interface will be displayed first, and then replaced
by the victim interface. In this scenario, we can
observe the victim interface showing up with a flash,
and the status of device screen is defined to be
Ω1. (II) The malicious Activity is processed before
the victim Activity, but these two activities are
processed nearly simultaneously. In this scenario, only
the victim interface is displayed without a flash. The
status of device screen is defined to be Ω2. (III)
The malicious Activity is processed after the victim
Activity, but these two activities are processed nearly
simultaneously. In this scenario, only the fake interface
is displayed without a flash. The status of device screen
is defined to be Ω3. (IV) The malicious Activity

is processed after the victim Activity. The victim
interface will be displayed first, and then replaced by
the fake interface. In this scenario, we can observe the
fake interface showing up with a flash, and the status
of device screen is defined to be Ω4. These statuses are
listed in Table 2.
It is obvious that an attacker will want the device

screen status to be Ω3. Therefore, we need to derive
an optimal delay time for the malicious Activity.
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Figure 3. Activity History Stack Timeline

However, for every victim app, the optimal delay time is
different. To derive the optimal delay for a specific app,
we can enumerate possible delay d to start themalicious
Activity with delay d. The delay values producing the
highest probability that statusΩ3 occur are the optimal
ones.
First, we select a set of different delays, which are

denoted as d1, d2, d3,...,dn. Next, we select delay d1
and start the malicious Activity with delay d1. We
repeatedly launch the victim app a number of times
and record the number of occurrences of each status
during these tests. We then select the next delay and
repeat the second step until all reasonable delays are
tested. Finally, we select a range of delay times within
which the number of occurrences of status Ω3 becomes
maximal, and correspondingly, the delays within this
range are the optimal delays. We evaluate this strategy
in Section 4.
Using the strategy above, a malware author can

derive an optimal delay for every victim app running
on different device models with different Android
versions, and keep a record of these optimal delays
in a remote server which provides all the malicious
payloads we developed. When our malicious service
tries to download a malicious payload from that server,
the malicious service also sends a request to get an
optimal delay to trigger that payload. Therefore, every
time a victim app is launched, a fake interface is always
shown without a flash.

4. Evaluation
To prove malware exploiting Android’s accessibility
framework is a new breed, we test our proof-of-concept
implementation against four free Android mobile
security applications from the Google Play Market:

AVG AntiVirus, Norton Mobile Security, Lookout
Mobile Security, and Trend Micro Mobile Security.
None of the four detected any suspicious behavior
or raised a flag during virus scanning while the
AccessibilityService was enabled.
In the following, we provide the experimental results

for detecting application launch and winning the race
condition. The malicious AccessibilityService was
tested on an Android emulator running Android 4.2, an
HTCNexus One running Android 2.3.6, and a Samsung
Galaxy S2 running CyanogenMod 9.

4.1. Detecting Application Launch
In the Android versions we tested, application launch
detection can be done for any application that
defines a Launcher Activity. This is true because
the objects that represent shortcut icons on the home
screen and the app drawer are descendants of the
TextView class, and do not override the behavior
of the onPopulateAccessibilityEvent method. The
TextView’s onPopulateAccess-ibilityEvent method
adds the character string contained in its text
field to the text list of character strings in the
AccessibilityEvent. The BubbleTextView class used
to represent shortcut icons will always store the
title of the shortcut that is displayed in the home
screen/app drawer in its text field. Therefore, the
launch detection simply must match this title in order
to detect application launch. Application shortcuts that
belong to the hotseat, the horizontal space at the bottom
of the default home screen that stays “docked" when
navigating to alternate home screens, do not display a
title but all shortcut icons in the application drawer
do. Although the hotseat applications do not display
a title, the AccessibilityEvent that is dispatched on
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click does contain the title, however this is not the case
in CyanogenMod 9.
We tested the launch detection capability on the

HTC Nexus One for the following six Android
applications: Messaging, Email, LinkedIn, Facebook,
Bank of America, and Browser. For each application,
a shortcut icon was created on the home screen. The
launch detection was successful for all six applications.

4.2. Winning Race Condition
During the launch detection testing, we noticed that
the malicious Activity was not displayed instead of
the victim Activity 100% of the time, especially when
the victim application was being launched for the first
time since system boot. To test this, we performed
two separate experiments. In the first experiment, we
ensured the application we were launching was not
running by pressing the Force Stop and Clear Data
buttons under the corresponding Settings -> Manage
Applications -> All menu for that application. These
two operations effectively force the application to be
reloaded from its initial state, as if the system had
just booted. We then returned to the home screen,
launched the application normally, and recorded which
Activity, malicious or victim, was displayed. In the
second experiment, we followed the same procedure,
but instead of force stopping and clearing the data, we
made sure that the victim application had previously
been launched before relaunching from the home
screen.
The two experiments were performed repeatedly

for each of the aforementioned applications, and we
observed the impact of the race condition discussed
in Section 3.3. However, by delaying the launch of the
malicious Activity for a specific time period before it is
started, we can guarantee that the malicious Activity
displays without a flash.
Initially, the two experiments were performed 50

times on each of the aforementioned applications, and
we observed the impact of the race condition. In each
instance of the first experiment, the victim Activity

was displayed due to the latency between the launch
of the malicious Activity and the victim Activity

as depicted in Figure 3. In the second experiment,
the malicious Activity was displayed for each launch
in 4 of the 5 tested applications. For the Browser
application, the malicious Activity only displayed 11
of the 50 times. This result could not be duplicated
on the Galaxy S2 or the Android emulator. The
exact cause of this discrepancy is unknown, though
device load, device speed, and other factors may have
an effect. For instance, custom services provided by
HTC’s Android build or HTC’s implementation of the
Browser application may introduce some delay into the
ActivityManager’s launch pipeline such that malicious

Table 3. Evaluation of Race Condition

Application Win rate
without
reloading

Win rate
with
reloading

Messaging 100% 100%
Email 100% 100%
LinkedIn 100% 100%
Facebook 100% 100%
Bank of America 100% 100%
Browser 100% 100%

Activity is not displayed. An application may define
flags in its manifest file that modify the behavior
of its main Activity launch. It is possible that the
combination of flags supplied in the Browser’s manifest
has some effect on the outcome.
We also observed that the first time an application

we are triggering the malicious payload on is launched
after the device boots, the malicious Activity may be
displayed. The difference between this scenario and the
first experiment is that the malicious Activity has
not previously been loaded. Therefore, there is some
nondeterministic time for both themalicious and victim
Activities and their resources to be loaded, while in
the first experiment the malicious Activity has already
been loaded but the victim Activity has not.
In order to guarantee that the malicious Activity

always display, we set the malicious Activity to sleep
for 50 milliseconds before it is started. Then we repeat
our experiments by testing each application for 50
times with reloading and another 50 times without
reloading. We observed that the malicious Activity

was displayed instead of the victim Activity 100%
of the time. We also observed that the first time an
application we are triggering the malicious payload
on is launched after the device boots, the malicious
Activity is always displayed. These results show that
our strategy of delaying the malicious Activity can
guarantee that the malicious Activity gain control of
the screen. Table 3 presents the results of experiments
conducted on HTC Nexus One.

4.3. Optimizing Delay
Now we evaluate our strategy of optimizing delay as
discussed in Section 3.3. We choose Browser app and
conduct two groups of tests on the HTC Nexus One
running Android 2.3.6.
In the first group of tests, we test the Browser app

with reloading. The procedure for our test is as follows.
(I) We select a set of different delays, and choose each
of these delays to launch our malicious Activity. (II)
We press the Force Stop and Clear Data buttons under
the corresponding Settings -> Manage Applications ->
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Table 4. Status with Reloading (HTC Nexus One running
Android 2.3.6)

Delay (ms) Ω1 Ω2 Ω3 Ω4
0 0% 100% 0% 0%

1 - 740 0% 0% 100% 0%
750 0% 0% 90% 10%
760 0% 0% 70% 30%
770 0% 0% 50% 50%
780 0% 0% 30% 70%
790 0% 0% 30% 70%
800 0% 0% 20% 80%
810 0% 0% 20% 80%
820 0% 0% 20% 80%
830 0% 0% 10% 90%
840 0% 0% 0% 100%

Table 5. Status without Reloading (HTC Nexus One running
Android 2.3.6)

Delay (ms) Ω1 Ω2 Ω3 Ω4
0 0% 20% 80% 0%

1-60 0% 0% 100% 0%
70 0% 0% 90% 10%
80 0% 0% 100% 0%
85 0% 0% 80% 20%
90 0% 0% 90% 10%
95 0% 0% 80% 20%
100 0% 0% 80% 20%
105 0% 0% 90% 10%
110 0% 0% 50% 50%
115 0% 0% 10% 90%
120 0% 0% 20% 80%
125 0% 0% 10% 90%
130 0% 0% 20% 80%

135 - 145 0% 0% 0% 100%

All menu for the Browser app. These two operations
effectively force the application to be reloaded from its
initial state when it is launched. (III) We launch the
Browser app from home screen, and count the number
of screen statuses we observe. (IV) For each delay, we
repeat step (II) and (III) many times and calculate the
rates of occurrences of those four statuses defined in
Table 2. We present our experimental results in Table
4.
From Table 4, we make the following observations.

(I) When delay is 0ms, the victim interface shows up
without a flash (Status Ω2) 100% of the time. (II) When
delay increases from 1ms to 740ms, the fake interface
shows up without a flash (Status Ω3) 100% of the time.
(III) When delay increases from 750ms to 840ms, the
rate of (Status Ω3) decreases to 0%, while the rate
of fake interface showing up with a flash (Status Ω4)

Table 6. Status with Reloading (Samsung S4 running Android
4.4.4)

Delay (ms) Ω1 Ω2 Ω3 Ω4
0 0% 100% 0% 0%

1-10 0% 97.5% 0.025% 0%
15 0% 50% 50% 0%
20 0% 10% 90% 0%

25-115 0% 0% 100% 0%
120 0% 0% 80% 20%
140 0% 0% 20% 80%

150-500 0% 0% 0% 100%

increases to 100%. Therefore, the optimal range of delay
is between 1ms and 740ms.
In the second group of tests, we test the Browser

app without reloading. The procedure for our test is as
follows. (I) We set the delay of our malicious Activity
to different values. (II) We launch the Browser app from
the home screen, and record the status of the screen
we observe. (III) For every setting of delay, we repeat
step (II) a number of times, and calculate the rates of
those four statuses defined in Table 2. We present our
experimental results in Table 5.
From Table 5, we make the following observations. (I)

When delay is 0ms, 20% of the time the victim interface
shows up without a flash (Status Ω2). 80% of the time
the fake interface shows up without a flash (Status
Ω3). (II) When delay increases from 1ms to 60ms, the
fake interface shows up 100% of the time without a
flash. (III) When delay increases from 70ms to 105ms,
the fake interface shows up 80% to 90% of the time
without a flash, and the fake interface shows up 10%
to 20% of the time with a flash (Status Ω4). (IV) When
delay increases from 110ms to 145ms, the probability
of Status Ω3 decreases to 0%, while the probability of
Status Ω4 increases to 100%. Therefore, we derive a
range of optimal delay, which is between 1ms and 60ms.
In the first group of experiments, the range of optimal

delay is between 1ms and 740ms. In the second group of
experiments, the range of optimal delay is between 1ms
and 60ms. Combining the experimental results from
these two groups, the optimal delay for the malicious
Activity is between 1ms and 60ms.
To illustrate the difference in performance between

older and current devices and Android versions, we
performed a set of experiments on a Samsung Galaxy S4
running Android 4.4.4. The optimal delay did change
between the older devices and the more modern S4,
likely due to the S4’s faster hardware and newer OS.
Table 6 summarizes the characteristics of the delay
on the S4 when clicking the Browser application with
reloading, while Table 7 summarizes the results without
reloading. There is a significant difference between the
S4 delays and the older devices in Tables 4 and 5,
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Table 7. Status without Reloading (Samsung S4 running Android
4.4.4)

Delay (ms) Ω1 Ω2 Ω3 Ω4
0 0% 100% 0% 0%
1 0% 90% 10% 0%
10 0% 100% 0% 0%
20 0% 20% 80% 0%

30-200 0% 0% 100% 0%
300 0% 0% 40% 60%
400 0% 0% 10% 90%
500 0% 0% 0% 100%

particularly for small delay values. Considering the
results from all four tables, the optimal delay for
the malicious Activity is between 30ms and 60ms.
To avoid suspicion in the event that the improved
performance of an OS upgrade alters the optimal delay,
a malware author could restrict the payload activation
to only those versions which have a known optimal
delay.

5. Discussion
In this section, we discuss various ways that the
malware discussed in this paper can be enhanced and
become much more sophisticated. Given the threat
from this new malware, we also discuss possible
countermeasures.

5.1. Extension of the Malware
Wehave shown that malware activation (the application
launch detection) rate is 100%, and any variety of
malicious payloads may be triggered this way. This
opens the door for attacks with an increased amount
of sophistication, an alarming thought given Zhou and
Jiang’s [33] evaluation of various state of the art mobile
anti-virus applications.
The proof of concept malware described in this

article can be improved in a number of ways. For
example, our current Activity does nothing to hide
itself from the Recent Tasks list, the window which
displays a list of the most recently used applications. To
become much harder to detect, a hacker could supply
the FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS flag in
the application manifest to exclude the malicious
Activity from the Recent Tasks list. Another area of
improvement is the type of events we are processing.
Our example focuses on AccessibilityEvents of type
TYPE_VIEW_CLICKED, however there are 22 other types
that could potentially be used to activate malicious
payloads with 100% success rate. We could improve
the likelihood of activation by matching on more
application launches. In fact, our technique could be
used to gather information about packages installed

on the device without the need to request permission
from the Package Manager. It could do so by harvesting
data from the package, class, and text fields of the
AccessibilityEvents it receives. Simply collecting the
text field of the AccessibilityEvent, as we do during
launch detection, will provide information about which
apps are installed on the device. Combined with
the remote payload update technique, this malware
could be dynamically extended to provide a malicious
payload for every app installed on the device. Finally,
this attack could be used for denial of service or
ransomware. An attacker could detect the launch of
the Settings application and display a blank Activity,
making the user unable to change any device settings.
Moreover, an attacker could detect the launch of any
application (even the Launcher itself) and display their
own ransom Activity, effectively rendering the device
useless until the attacker is paid some amount ofmoney.

5.2. Countermeasures
The attacks mentioned above are not foolproof. There
are certain safeguards built into Android devices to
thwart a full device takeover by a malicious user.
Recovery Mode is one such safeguard that allows
the user to install a clean OS, wiping any malicious
apps from the data partition in the process. An
experienced user could use the Android Debug Bridge
(ADB) to obtain a command shell into the device
and launch applications from the command line
am tool or even locate and uninstall the malicious
applications. Applications launched from the am tool
do not invoke the Launcher application, therefore
our technique is unable to detect this. If malicious
application developers were to become aware of the am
countermeasure, the malicious AccessibilityService
could be rewritten to trigger on a non-Launcher event.
For example, any Activity containing a button widget
that launches a new Activity could be targeted if
the malware is modified to trigger on the button click
AccessibilityEvent rather than the Launcher event.
However, doing so may limit the generic nature of this
attack.
As a countermeasure to the malicious Activity

payload, the logic which reorders the Activity history
stack and determines the next Activity to be displayed
should be analyzed and corrected. The two main
Android files containing said logic are frameworks/b
ase/services/java/com/android/server/am/ActivityMa
nagerService.java and frameworks/base/services/java/
com/android/server/am/ActivityStack.java. Ensuring
that the next Activity to be displayed is indeed the
Activity that was requested by startActivity could
prevent the malicious Activity from being displayed
instead of the legitimate Activity. However, this fix
does not hinder launch detection and the attacker could
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simply delay the start of the malicious Activity for
some short time, ensuring that the malicious Activity
is displayed after all. The difference here is that there
may be some obvious transition animation, if the
developer of the legitimate app has not disabled it, from
the legitimate Activity to the malicious Activity.

6. Related Work
In 2009, Schmidt et al. [31] made a survey of mobile
malware and found that most malware targets Symbian
OS. They reported F-Secure Research in Helsinki
counted 418 malware samples, some of which were not
public, while they collected information of 288 public
malware. 278 of these 288 public malware targeted
Symbian OS. A note is On February 11 2011, Nokia
announced to adopt Microsoft’s Windows Phone OS
as its primary smartphone platform, and Symbian has
faded out since then. Since Android OS was getting
attention at that point and the authors investigated
possibilities of malware on Android, they explored
“social engineering"-based Android malware, where
the malicious functionality is hidden in a seemingly
benign host app. They demonstrated such functionality
can be binary code. android.os.Exec can be used to
finally execute such binary code. The binary code
is the payload of the malware. The authors show
the payload can be crafted to bypass the Android
permission system such as accessing /proc and /sys/,
deplete the device’s battery by using energy consuming
FPU (Floating Point Unit) operations, and run arbitrary
ARM instructions on a rooted G1 Android smartphone.
Felt et al. [26] classify threats from third-party
smartphone applications into malware, grayware, and
personal spyware. Malware intends to damage finance or
property of the smartphone owner. An “attacker" such
as a spouse who has physical access to a smartphone
can install personal spyware on the victim smartphone
and gather information about the smartphone owner,
for example, tracking the victim. Grayware is often
commercial applications with real functionality while
stealing user information. The distributor may have
a privacy policy with varying degree of clarity. The
authors conduct a survey of 46 pieces of smartphone
malware and their incentives and conclude that Apple’s
mechanisms of application permission and review
process can avoid approving malware. Becher et
al. [22] examine mechanisms securing sophisticated
mobile devices in 2011. Although no major incidents
of attacking smartphones have happened, small-scale
attacks have been emerging. Threats were classified
into four classes: hardware centric, device independent,
software centric, and user layer attacks for the purpose of
eavesdropping, availability attacks, privacy attacks and
impersonation attacks. Existing security mechanisms
are enumerated for various attacks.

Enck et al. [25] implemented ded, a Dalvik decom-
piler. ded transfers .dex file into Java source code. It was
then used for analyzing security of 1,100 popular free
Android applications. The followingmajor observations
were made: misuse of privacy sensitive information
including phone identifiers such as IMEI, IMSI, and
ICC-ID and geographic location; “no evidence of tele-
phony misuse, background recording of audio or video,
abusive connections, or harvesting lists of installed
applications"; wide use of ad and analytic network
libraries by 51% of the applications; no exploitable
vulnerabilities leading to control of the phone. Zheng
et al. [32] developed ADAM, an automated system for
evaluating the detection of Android malware. ADAM
uses repackaging and code obfuscation to generate
different variants of a malware. They collected 222
malware samples and used ADAM to generate vari-
ants of those malware. Those variants were fed into
VirusTotal [21], “a free service that analyzes suspicious
files and URLs and facilitates the quick detection of
viruses, worms, trojans, and all kinds of malware".
They have observed that commercial anti-virus showed
different detection rate for different variants. New anti-
virus software such as Antiy [14] shows better perfor-
mance than older anti-virus software. Rastogi, Chen
and Jiang [30] made similar effort to test state-of-the-
art Andoroid commercial mobile anti-malware prod-
ucts for detecting transformed malware. Such trans-
formation techniques include polymorphism (where
transformed code is still similar to the original code)
and metamorphism (where transformed code is totally
different from the original code, but with similar mal-
ware functionality). Zhou et al. [34] developed a system
called DroidRanger, evaluating the health of Android
markets, including the official Android Market, eoe-
Market [16], alcatelclub [12], gfan [17], and mmoovv
[20]1. To detect known Android malware, DroidRanger
uses permission-based filtering to detect malware using
suspicious permissions and behavioral footprint match-
ing to detect malware performing suspicious behav-
ior such as listening to system-wide broadcast mes-
sages and sending and monitoring SMS messages. To
detect unknown Android malware, DroidRanger uses
two steps: heuristics based filtering and dynamic exe-
cution monitoring. The heuristics based filtering can
utilize Android features misused to load new code,
either Java binary code from a remote server or native
machine code. Dynamic execution monitoring checks
what APIs an app is using. DroidRanger was able to
find 211 malicious or infected apps out 204,040 apps
from the five studied marketplaces, including two zero-
day malware. Zhou and Jiang [33] made a one year
effort and analyzed more than 1,200 malware samples,

1Link is no longer valid
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which covered a majority of state-of-the-art Android
malware. They obtained those samples by manually or
automatically crawling various Android markets. They
characterize Android malware by their installation,
activation, payload and permission use. Installation of
malware on a victim device uses three main social engi-
neering based approaches, repackaging, update attack,
and drive-by download. In repackaging, a benign app
is downloaded, piggybacked with malicious code and
uploaded onto a market again. In update attack, a
malware author put code into an app, and the rest
of the malicious code will be downloaded when the
malware is running. In drive-by download, ad is used
in a malware to attract the victim to download more
spyware and other malware. Other attacks also exist:
spyware, fake apps masquerading as other legitimate
apps, apps with malicious functionality such as sending
unauthorized SMS messages, apps exploiting root priv-
ilege. Malicious apps can be activated by various sys-
tem events including BOOT_COMPLETED, SMS_RECEIVED,
and UI interaction events. Malware can have a vari-
ety of payloads, targeting privilege escalation, remote
control, financial charges, and personal information
stealing. Malware without root exploits often uti-
lizes INTERNET, READ_PHONE_STATE, ACCESS_NETWORK_
STATE, and WRITE_EXTERNAL_STORAGE permissions. The
authors have found that malware have been evolving to
avoid detection and have more sophisticated function-
ality such as making the device part of a botnet. Current
anti-virus software downloadable from Google market,
AVG Antivirus Free, Lookout Security & Antivirus,
Norton Mobile Security Lite, and Trend Micro Mobile
Security Personal Edition, do not perform well in
detecting malware the authors collected. Bugiel et al.
[24] studied ways to defend against privilege-escalation
attacks on Android. Such privilege-escalation attacks
include confused deputy attacks and colluding attacks.
Confused deputy attacks exploit unprotected interfaces
of a benign application. Colluding attacks involve mul-
tiple apps. For example, one app can record audio and
another one has the Internet permission. In this way,
the second app can send the overheard credit numbers
out. The authors designed and implemented a security
framework to detect and prevent confused deputy and
collusion attacks.
There are other survey works on mobile security and

malware. Becher et al. [23] performs a comprehensive
survey of mobile security from hardware to software.
It is a comprehensive enumeration of existing wireless
technologies and possible attacks against those tech-
nologies and devices. La Polla et al. [29] surveys mobile
device security and complements the work in [23]. Peng
et al. [28] performs a survey of malware on platforms
such as Android, Windows Mobile and Symbian. The
categorization of malware follows traditional jargons
such as worms, viruses and trojans. They also survey

malware propagation strategies. For our future work,
we hope to have a system of categorization that sys-
tematically characterizes the underlying techniques of
mobile malware.

7. Conclusion
This paper introduces a new type of malware that
leverages Android’s accessibility framework to activate
its malicious payloads. We detail the implementation
of an example malicious application that uses the
Accessibility APIs to masquerade as a legitimate
application. We describe results from the experiments
we performed to quantify both the success of
application launch detection and exploiting the logic
error in the ActivityStack class. We show that, by
adding a delay to the launch of the malicious Activity,
we can guarantee 100% that the malicious Activity

will be displayed. We also discuss possible strategies to
mitigate this type of malware.
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